3,593 research outputs found

    How can humans leverage machine learning? From Medical Data Wrangling to Learning to Defer to Multiple Experts

    Get PDF
    Mención Internacional en el título de doctorThe irruption of the smartphone into everyone’s life and the ease with which we digitise or record any data supposed an explosion of quantities of data. Smartphones, equipped with advanced cameras and sensors, have empowered individuals to capture moments and contribute to the growing pool of data. This data-rich landscape holds great promise for research, decision-making, and personalized applications. By carefully analyzing and interpreting this wealth of information, valuable insights, patterns, and trends can be uncovered. However, big data is worthless in a vacuum. Its potential value is unlocked only when leveraged to drive decision-making. In recent times we have been participants of the outburst of artificial intelligence: the development of computer systems and algorithms capable of perceiving, reasoning, learning, and problem-solving, emulating certain aspects of human cognitive abilities. Nevertheless, our focus tends to be limited, merely skimming the surface of the problem, while the reality is that the application of machine learning models to data introduces is usually fraught. More specifically, there are two crucial pitfalls frequently neglected in the field of machine learning: the quality of the data and the erroneous assumption that machine learning models operate autonomously. These two issues have established the foundation for the motivation driving this thesis, which strives to offer solutions to two major associated challenges: 1) dealing with irregular observations and 2) learning when and who should we trust. The first challenge originates from our observation that the majority of machine learning research primarily concentrates on handling regular observations, neglecting a crucial technological obstacle encountered in practical big-data scenarios: the aggregation and curation of heterogeneous streams of information. Before applying machine learning algorithms, it is crucial to establish robust techniques for handling big data, as this specific aspect presents a notable bottleneck in the creation of robust algorithms. Data wrangling, which encompasses the extraction, integration, and cleaning processes necessary for data analysis, plays a crucial role in this regard. Therefore, the first objective of this thesis is to tackle the frequently disregarded challenge of addressing irregularities within the context of medical data. We will focus on three specific aspects. Firstly, we will tackle the issue of missing data by developing a framework that facilitates the imputation of missing data points using relevant information derived from alternative data sources or past observations. Secondly, we will move beyond the assumption of homogeneous observations, where only one statistical data type (such as Gaussian) is considered, and instead, work with heterogeneous observations. This means that different data sources can be represented by various statistical likelihoods, such as Gaussian, Bernoulli, categorical, etc. Lastly, considering the temporal enrichment of todays collected data and our focus on medical data, we will develop a novel algorithm capable of capturing and propagating correlations among different data streams over time. All these three problems are addressed in our first contribution which involves the development of a novel method based on Deep Generative Models (DGM) using Variational Autoencoders (VAE). The proposed model, the Sequential Heterogeneous Incomplete VAE (Shi- VAE), enables the aggregation of multiple heterogeneous data streams in a modular manner, taking into consideration the presence of potential missing data. To demonstrate the feasibility of our approach, we present proof-of-concept results obtained from a real database generated through continuous passive monitoring of psychiatric patients. Our second challenge relates to the misbelief that machine learning algorithms can perform independently. However, this notion that AI systems can solely account for automated decisionmaking, especially in critical domains such as healthcare, is far from reality. Our focus now shifts towards a specific scenario where the algorithm has the ability to make predictions independently or alternatively defer the responsibility to a human expert. The purpose of including the human is not to obtain jsut better performance, but also more reliable and trustworthy predictions we can rely on. In reality, however, important decisions are not made by one person but are usually committed by an ensemble of human experts. With this in mind, two important questions arise: 1) When should the human or the machine bear responsibility and 2) among the experts, who should we trust? To answer the first question, we will employ a recent theory known as Learning to defer (L2D). In L2D we are not only interested in abstaining from prediction but also in understanding the humans confidence for making such prediction. thus deferring only when the human is more likely to be correct. The second question about who to defer among a pool of experts has not been yet answered in the L2D literature, and this is what our contributions aim to provide. First, we extend the two yet proposed consistent surrogate losses in the L2D literature to the multiple-expert setting. Second, we study the frameworks ability to estimate the probability that a given expert correctly predicts and assess whether the two surrogate losses are confidence calibrated. Finally, we propose a conformal inference technique that chooses a subset of experts to query when the system defers. Ensembling experts based on confidence levels is vital to optimize human-machine collaboration. In conclusion, this doctoral thesis has investigated two cases where humans can leverage the power of machine learning: first, as a tool to assist in data wrangling and data understanding problems and second, as a collaborative tool where decision-making can be automated by the machine or delegated to human experts, fostering more transparent and trustworthy solutions.La irrupción de los smartphones en la vida de todos y la facilidad con la que digitalizamos o registramos cualquier situación ha supuesto una explosión en la cantidad de datos. Los teléfonos, equipados con cámaras y sensores avanzados, han contribuido a que las personas puedann capturar más momentos, favoreciendo así el creciente conjunto de datos. Este panorama repleto de datos aporta un gran potencial de cara a la investigación, la toma de decisiones y las aplicaciones personalizadas. Mediante el análisis minucioso y una cuidada interpretación de esta abundante información, podemos descubrir valiosos patrones, tendencias y conclusiones Sin embargo, este gran volumen de datos no tiene valor por si solo. Su potencial se desbloquea solo cuando se aprovecha para impulsar la toma de decisiones. En tiempos recientes, hemos sido testigos del auge de la inteligencia artificial: el desarrollo de sistemas informáticos y algoritmos capaces de percibir, razonar, aprender y resolver problemas, emulando ciertos aspectos de las capacidades cognitivas humanas. No obstante, solemos centrarnos solo en la superficie del problema mientras que la realidad es que la aplicación de modelos de aprendizaje automático a los datos presenta desafíos significativos. Concretamente, se suelen pasar por alto dos problemas cruciales en el campo del aprendizaje automático: la calidad de los datos y la suposición errónea de que los modelos de aprendizaje automático pueden funcionar de manera autónoma. Estos dos problemas han sido el fundamento de la motivación que impulsa esta tesis, que se esfuerza en ofrecer soluciones a dos desafíos importantes asociados: 1) lidiar con datos irregulares y 2) aprender cuándo y en quién debemos confiar. El primer desafío surge de nuestra observación de que la mayoría de las investigaciones en aprendizaje automático se centran principalmente en manejar datos regulares, descuidando un obstáculo tecnológico crucial que se encuentra en escenarios prácticos con gran cantidad de datos: la agregación y el curado de secuencias heterogéneas. Antes de aplicar algoritmos de aprendizaje automático, es crucial establecer técnicas robustas para manejar estos datos, ya que est problemática representa un cuello de botella claro en la creación de algoritmos robustos. El procesamiento de datos (en concreto, nos centraremos en el término inglés data wrangling), que abarca los procesos de extracción, integración y limpieza necesarios para el análisis de datos, desempeña un papel crucial en este sentido. Por lo tanto, el primer objetivo de esta tesis es abordar el desafío normalmente paso por alto de tratar datos irregulare. Específicamente, bajo el contexto de datos médicos. Nos centraremos en tres aspectos principales. En primer lugar, abordaremos el problema de los datos perdidos mediante el desarrollo de un marco que facilite la imputación de estos datos perdidos utilizando información relevante obtenida de fuentes de datos de diferente naturalaeza u observaciones pasadas. En segundo lugar, iremos más allá de la suposición de lidiar con observaciones homogéneas, donde solo se considera un tipo de dato estadístico (como Gaussianos) y, en su lugar, trabajaremos con observaciones heterogéneas. Esto significa que diferentes fuentes de datos pueden estar representadas por diversas distribuciones de probabilidad, como Gaussianas, Bernoulli, categóricas, etc. Por último, teniendo en cuenta el enriquecimiento temporal de los datos hoy en día y nuestro enfoque directo sobre los datos médicos, propondremos un algoritmo innovador capaz de capturar y propagar la correlación entre diferentes flujos de datos a lo largo del tiempo. Todos estos tres problemas se abordan en nuestra primera contribución, que implica el desarrollo de un método basado en Modelos Generativos Profundos (Deep Genarative Model en inglés) utilizando Autoencoders Variacionales (Variational Autoencoders en ingés). El modelo propuesto, Sequential Heterogeneous Incomplete VAE (Shi-VAE), permite la agregación de múltiples flujos de datos heterogéneos de manera modular, teniendo en cuenta la posible presencia de datos perdidos. Para demostrar la viabilidad de nuestro enfoque, presentamos resultados de prueba de concepto obtenidos de una base de datos real generada a través del monitoreo continuo pasivo de pacientes psiquiátricos. Nuestro segundo desafío está relacionado con la creencia errónea de que los algoritmos de aprendizaje automático pueden funcionar de manera independiente. Sin embargo, esta idea de que los sistemas de inteligencia artificial pueden ser los únicos responsables en la toma de decisione, especialmente en dominios críticos como la atención médica, está lejos de la realidad. Ahora, nuestro enfoque se centra en un escenario específico donde el algoritmo tiene la capacidad de realizar predicciones de manera independiente o, alternativamente, delegar la responsabilidad en un experto humano. La inclusión del ser humano no solo tiene como objetivo obtener un mejor rendimiento, sino también obtener predicciones más transparentes y seguras en las que podamos confiar. En la realidad, sin embargo, las decisiones importantes no las toma una sola persona, sino que generalmente son el resultado de la colaboración de un conjunto de expertos. Con esto en mente, surgen dos preguntas importantes: 1) ¿Cuándo debe asumir la responsabilidad el ser humano o cuándo la máquina? y 2) de entre los expertos, ¿en quién debemos confiar? Para responder a la primera pregunta, emplearemos una nueva teoría llamada Learning to defer (L2D). En L2D, no solo estamos interesados en abstenernos de hacer predicciones, sino también en comprender cómo de seguro estará el experto para hacer dichas predicciones, diferiendo solo cuando el humano sea más probable en predecir correcatmente. La segunda pregunta sobre a quién deferir entre un conjunto de expertos aún no ha sido respondida en la literatura de L2D, y esto es precisamente lo que nuestras contribuciones pretenden proporcionar. En primer lugar, extendemos las dos primeras surrogate losses consistentes propuestas hasta ahora en la literatura de L2D al contexto de múltiples expertos. En segundo lugar, estudiamos la capacidad de estos modelos para estimar la probabilidad de que un experto dado haga predicciones correctas y evaluamos si estas surrogate losses están calibradas en términos de confianza. Finalmente, proponemos una técnica de conformal inference que elige un subconjunto de expertos para consultar cuando el sistema decide diferir. Esta combinación de expertos basada en los respectivos niveles de confianza es fundamental para optimizar la colaboración entre humanos y máquinas En conclusión, esta tesis doctoral ha investigado dos casos en los que los humanos pueden aprovechar el poder del aprendizaje automático: primero, como herramienta para ayudar en problemas de procesamiento y comprensión de datos y, segundo, como herramienta colaborativa en la que la toma de decisiones puede ser automatizada para ser realizada por la máquina o delegada a expertos humanos, fomentando soluciones más transparentes y seguras.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Joaquín Míguez Arenas.- Secretario: Juan José Murillo Fuentes.- Vocal: Mélanie Natividad Fernández Pradie

    Analysis of Parkinson's Disease Gait using Computational Intelligence

    Get PDF
    Millions of individuals throughout the world are living with Parkinson’s disease (PD), a neurodegenerative condition whose symptoms are difficult to differentiate from those of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease that have been utilized as the main diagnostic factor. Bradykinesia, tremors, depression, hallucinations, cognitive impairment, and falls are all common symptoms of Parkinson’s disease (PD). This research uses a dataset that captures data on individuals with PD who suffer from freezing of gait. This dataset includes data for medication in both the “On” and “Off” stages (denoting whether patients have taken their medicines or not). The dataset is comprised of four separate experiments, which are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and Dual Motor and Cognitive Task. Each of these tests has been carried out over a total of three separate attempts (trials) to verify that they are both reliable and accurate. The dataset was used for four significant challenges. The first challenge is to differentiate between people with Parkinson’s disease and healthy volunteers, and the second task is to evaluate effectiveness of medicines on the patients. The third task is to detect episodes of FOG in each individual, and the last task is to predict the FOG episode at the time of occurrence. For the last task, the author proposed. a new framework to make real-time predictions for detecting FOG, in which the results demonstrated the effectiveness of the approach. It is worth mentioning that techniques from many classifiers have been combined in order to reduce the likelihood of being biased toward a single approach. Multilayer Perceptron, K-Nearest Neighbors, random Forest, and Decision Tree Classifier all produced the best results when applied to the first three tasks with an accuracy of more than 90% amongst the classifiers that were investigated

    A Design Thinking Framework for Human-Centric Explainable Artificial Intelligence in Time-Critical Systems

    Get PDF
    Artificial Intelligence (AI) has seen a surge in popularity as increased computing power has made it more viable and useful. The increasing complexity of AI, however, leads to can lead to difficulty in understanding or interpreting the results of AI procedures, which can then lead to incorrect predictions, classifications, or analysis of outcomes. The result of these problems can be over-reliance on AI, under-reliance on AI, or simply confusion as to what the results mean. Additionally, the complexity of AI models can obscure the algorithmic, data and design biases to which all models are subject, which may exacerbate negative outcomes, particularly with respect to minority populations. Explainable AI (XAI) aims to mitigate these problems by providing information on the intent, performance, and reasoning process of the AI. Where time or cognitive resources are limited, the burden of additional information can negatively impact performance. Ensuring XAI information is intuitive and relevant allows the user to quickly calibrate their trust in the AI, in turn improving trust in suggested task alternatives, reducing workload and improving task performance. This study details a structured approach to the development of XAI in time-critical systems based on a design thinking framework that preserves the agile, fast-iterative approach characteristic of design thinking and augments it with practical tools and guides. The framework establishes a focus on shared situational perspective, and the deep understanding of both users and the AI in the empathy phase, provides a model with seven XAI levels and corresponding solution themes, and defines objective, physiological metrics for concurrent assessment of trust and workload

    Detecting Local Item Dependence in Polytomous Adaptive Data

    Get PDF
    A rapidly expanding arena for item response theory (IRT) is in attitudinal and health-outcomes survey applications, often with polytomous items. In particular, there is interest in computer adaptive testing (CAT). Meeting model assumptions is necessary to realize the benefits of IRT in this setting, however. Although initial investigations of local item dependence (LID) have been studied both for polytomous items in fixed-form settings and for dichotomous items in CAT settings, there have been no publications applying LID detection methodology to polytomous items in CAT despite its central importance to these applications. The research documented herein investigates the extension of widely used methods of LID detection, Yen's Q3 statistic and Pearson's Statistic X2, in this context, via a simulation study. The simulation design and results are contextualized throughout with a real item bank and data set of this type from the Patient-Reported Outcomes Measurement Information System (PROMIS)

    Quantification and classification of potassium and calcium disorders with the electrocardiogram: What do clinical studies, modeling, and reconstruction tell us?

    Get PDF
    Diseases caused by alterations of ionic concentrations are frequently observed challenges and play an important role in clinical practice. The clinically established method for the diagnosis of electrolyte concentration imbalance is blood tests. A rapid and non-invasive point-of-care method is yet needed. The electrocardiogram (ECG) could meet this need and becomes an established diagnostic tool allowing home monitoring of the electrolyte concentration also by wearable devices. In this review, we present the current state of potassium and calcium concentration monitoring using the ECG and summarize results from previous work. Selected clinical studies are presented, supporting or questioning the use of the ECG for the monitoring of electrolyte concentration imbalances. Differences in the findings from automatic monitoring studies are discussed, and current studies utilizing machine learning are presented demonstrating the potential of the deep learning approach. Furthermore, we demonstrate the potential of computational modeling approaches to gain insight into the mechanisms of relevant clinical findings and as a tool to obtain synthetic data for methodical improvements in monitoring approaches

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal
    corecore