211 research outputs found

    Strategies for Time Domain Characterization of UWB Components and Systems

    Get PDF
    In this work new methods and criteria for the analysis of Ultra Wideband (UWB) components and systems are introduced. This permit to have a deeper insight into the component characteristics like signal distortion, ringing and dispersion, introduced by the non-ideal behavior of the UWB components over the wide frequency band. The developed analyses are the basis for correction and optimization strategies for the features of the UWB components and systems, compensating for their non-idealities

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Wireless Alliance for Testing Experiment and Research (WALTER) Experts Workshop

    Get PDF
    The purpose of the publication is to describe the WALTER experts workshop and related results and findings. The workshop was conducted in Ispra, Varese, Italy from the 2nd to the 3rd of July 2008 at the European Commission JRC facilities. The workshop was organized as part of the FP7 WALTER project, which has the objective of define a networked test bed laboratory to evaluate UltraWideBand (UWB) technology and equipment. The purpose of WALTER workshop was to present and discuss the current regulatory, standardization and research status of UltraWideBand (UWB) technology with special focus on the definition of requirements, methodologies and tools for UWB measurements and testing. The WALTER workshop had the following main objectives: - Identify the main regulatory and standardization challenges for the adoption of UWB in Europe and the world. Support the identification and resolution of conflicting requirements. - Identify the main challenges in the UWB testing and measurements. Describe how the current industrial and research activity could support the resolution of these challenges. - Discuss the future developments like UWB at 60 GHz and innovative interference and mitigation techniques including Detect And Avoid (DAA). A number of international experts in the UltraWideBand field have been invited to participate to this workshop, to encourage bi-directional communication: in one direction to disseminate the information on WALTER project and its activities, in the other direction to collect the input and feedback on the regulatory and standardization work, industrial activity and research studies.JRC.G.6-Sensors, radar technologies and cybersecurit

    Filter Design for the Spectral Optimization of UWB Signals

    Get PDF
    Projecte realitzat en col.laboració amb el centre Universität Karlsruhe (TH

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    Low power UWB transceiver design using dynamic voltage scaling

    Get PDF
    Low power consumption is a critical issue in many UWB systems. In this paper, we investigate the application of dynamic voltage scaling (DVS) and other low power design techniques to a multiband-OFDM UWB transceiver baseband circuit design in order to reduce average power consumption of the chip. Our results show significant power savings over the conventional approach. © 2007 IEEE

    Evolutionary Trends in True Time Delay Line Technologies for Timed Array Radars

    Get PDF
    Timed array technology is rapidly evolving in multiple areas such as high resolution imaging radar, automotive,&nbsp;medical, high data rate communication applications etc. Timed arrays by utilising True Time Delay (TTD) lines in&nbsp;place of phase shifters mitigate beam squint and pulse dispersion issues associated with wide instantaneous bandwidth arrays. This paper presents on review of evolutionary trends in TTD line architectures starting from coaxial cable to photonic integrated circuit. The paper also reports on critical parameters of TTD lines, their importance and implication in design of typical X-band imaging radar. Comparison of different TTD line architectures in terms of configuration, implementation, merits and demerits are discussed in detail for wideband array application. The paper also brings out the integration aspects of TTD lines as part of T/R modules and proposes suitable design schemes towards performance optimization and realisation of timed arrays

    Multi-Layer Ultra-Wideband Wilkinson Combiner for Arrays

    Get PDF
    This work investigates an ultra-wideband (UWB), compact, and multilayer Wilkinson power combiners for tightly coupled array (TCA) designs. The Wilkinson topology designs encompass UHF, L-, and S-bands. These combiners integrate into an experimental UWB TCA. The experimental UWB TCA divides into twenty-four columns, with each column containing eight unit cells, and each cell one-inch square. The Wilkinson power combiner contains eight input ports and one output port. Twenty-four combiners mount to the TCA’s back. The combiner condenses the two-dimensional array (8x24) to a one-dimensional or linear array (1x24). The proposed Wilkinson power combiner possesses a multilayer design reducing common mode current problems caused by vias. The Wilkinson combiner covers 500 MHz to 3.28 GHz and provides a 6.56:1 bandwidth. It achieves tight impedance matching through stripline coupling. The proposed design provides minimal phase error, equal power reception, and low power handling. The power combiner interfaces with an experimental UWB TCA antenna through SMP snap connectors. This paper examines signal combining efficiency to provide minimum path loss. This paper also examines interconnecting transmission lines traversing multiple laminate layers. This necessitates proper current handling because interconnects influence impedance, transmission, and isolation. Integrating a via picket fence improves port isolation and reduces propagating parallel plate modes. The proposed combiner design achieved the following important attributes at or better than the minimum required specifications. The measured combiner design successfully demonstrated -7.8dB minimum return loss for input and -18.1dB return loss for the outputs; 10.92dB ± 1.28dB insertion loss; -12.2db minimum isolation; ± 1.38° minimal phase error; ± 0.57dB power reception imbalance. The proposed UWB combiner design condensed the four-stage Wilkinson footprint to consume no more than 0.4in² (258mm²) surface area, weighed only 1.5oz (42.5g), and less than a half-inch thick

    Noise-based Transmit Reference Modulation:A Feasibility Analysis

    Get PDF
    Wireless sensor networks (WSNs) receive huge research interest for a multitude of applications, ranging from remote monitoring applications, such as monitoring of potential forest fires, floods and air pollution, to domestic and industrial monitoring of temperature, humidity, vibration, stress, etc. In the former set of applications, a large number of nodes can be involved which are usually deployed in remote or inaccessible environments. Due to logistic and cost reasons, battery replacement is undesired. Energy-efficient radios are needed, with a power-demand so little that batteries can last the lifetime of the node or that the energy can be harvested from the environment. Coherent direct-sequence spread spectrum (DSSS) based radios are widely employed in monitoring applications, due to their overall resilience to channel impairments and robustness against interference. However, a DSSS rake receiver has stringent requirements on precise synchronization and accurate channel knowledge. To obviate the complexity of a coherent DSSS receiver, particularly for low data rate sensor networks, a DSSS scheme that has fast synchronization and possibly low power consumption, is much desired. In this regard, this thesis studies a noncoherent DSSS scheme called transmit reference (TR), which promises a simple receiver architecture and fast synchronization. In traditional TR, the modulated information signal is sent along an unmodulated reference signal, with a small time offset between them. In this thesis, we present and investigate a variant of TR, called noise-based frequency offset modulation (N-FOM), which uses pure noise as the spreading signal and a small frequency offset (instead of a time offset) to separate the information and reference signals. The detection is based on correlation of the received signal with a frequency-shifted version of itself, which collects the transmitted energy without compromising the receiver simplicity. Analytical expressions on performance metrics, supplemented by simulation results, improve understanding of the underlying mechanisms and provide insights into utility of N-FOM in low-power WSNs. In point-to-point line-of-sight (LOS) communication, it was observed that the communication scheme has a minimal utility. The energy-detector type of receiver mixes all in-band signals, which magnifies the overall noise. Particularly, the self-mixing of the transmitted signal also elevates the noise level, which increases with a further increase in the received signal energy. Therefore, for a fixed set of system parameters, the performance attains an asymptote with increasing transmission power. The phenomenon also establishes a non-monotonic relation between performance and the spreading factor. It was observed that a higher spreading factor in N-FOM is beneficial only in a high-SNR regime. After developing an understanding of the performance degrading mechanisms, few design considerations are listed. It is found that a suitable choice of the receiver front-end filter can maximize the SNR. However, the optimal filter depends on received signal and noise levels. A practically feasible – albeit suboptimal – filter is presented which gives close to the optimal performance. Next, timing synchronization is considered. The implications of synchronization errors are analyzed, and a synchronization strategy is devised. The proposed synchronization strategy has little overhead and can be easily implemented for symbol-level synchronization. The N-FOM LOS link model is extended to assess the performance degradation due to interference. Performance metrics are derived which quantify the effects of multiple-user interference, as well as that from external interferers, such as WiFi. Since the correlation operation mixes all in-band signals, the total interfering entities are quadratically increased. The research shows the vulnerability of N-FOM to interference, which makes it optimistic to operate in a crowded shared spectrum (such as the ISM 2.4\,GHz band). We also observe an upper limit on the number of mutually interfering links in a multiple access (MA) network, that can be established with an acceptable quality. The scheme is further investigated for its resilience against impairments introduced by a dense multipath environment. It is observed that despite the noise enhancement, the N-FOM system performs reasonably well in a non-line-of-sight (NLOS) communication. The detection mechanism exploits the multipath channel diversity and leads to an improved performance in a rich scattering environment. An analytical expression for outage probability is also derived. The results indicate that a healthy N-FOM link with very low outage probability can be established at a nominal value of the received bit SNR. It is also found that the choice of the frequency offset is central to the system design. Due to multiple practical implications associated with this parameter, the maximum data rate and the number of usable frequency offsets are limited, particularly in a MA NLOS communication scenario. The analysis evolves into a rule-of-thumb criterion for the data rate and the frequency offset. It is deduced that, due to its limited capability to coexist in a shared spectrum, N-FOM is not a replacement for coherent DSSS systems. The scheme is mainly suited to a low data rate network with low overall traffic, operating in an interference-free rich scattering environment. Such a niche of sensor applications could benefit from N-FOM where the design goal requires a simple detection mechanism and immunity to multipath fading

    About the Use of Adaptive Antennas in 60 GHz UWB-OFDM Personal Area Network Transceivers

    Get PDF
    The recent opening of unlicensed spectrum around 60 GHz has raised the interest in designing gigabit Wireless Personal Area Networks (WPANs). Since at 60 GHz the signal attenuation is strong, this band is basically suitable for short range wireless communications. It is understood that directional antennas can be employed to compensate for the path loss and combat the waste of power due to the scatter phenomena characteristic of these high frequencies. This thesis studies the use of adaptive array systems in 60 GHz Ultra Wide Band-Orthogonal Frequency Division Multiplexing (UWB-OFDM) personal area network transceivers. The study has been conducted by simulations and theoretical analysis. Two sensor arrangements have been considered, the Uniform Linear Arrays (ULA) and the Uniform Circular Arrays (UCA), in the simple case of the Line of Sight (LOS) transmission scenario. On the one hand we have designed a IEEE 802.15.3c Medium Access Control (MAC) phased-array controller throughput using Direction of Arrival (DOA) estimation to perform beamsteering. We have simulated the MAC controller with the network simulator ns-2. The impact of the array controller performance onto the achievable throughput of the wireless links has been studied to draw the requirements about the standard deviation of the DOA estimator. On the other hand, we have found the Cramér-Rao Bound (CRB) for DOA estimation of impinging 60 GHz OFDM sources. The requirements of the standard deviation of the DOA estimator are analysed against the CRB for DOA to validate the design of the directional 60 GHz UWB-OFDM transceivers. The comparison reveals that directional 60 GHz UWB-OFDM transceivers can achieve high wireless throughput with a number of pilot subcarriers and for a Signal to Noise Ratio (SNR) operating range typical of next generation WPAN
    corecore