1,537 research outputs found

    Metabolic spatial connectivity in Amyotrophic Lateral Sclerosis as revealed by independent component analysis

    Get PDF
    Objectives. Positron emission tomography (PET) and volume of interest (VOI) analysis have recently shown in amyotrophic lateral sclerosis (ALS) an accuracy of 93% in differentiating patients from controls. The aim of this study was to disclose by spatial independent component analysis (ICA) the brain networks involved in ALS pathological processes and evaluate their discriminative value in separating patients from controls. Experimental design. Two hundred fifty-nine ALS patients and 40 age- and sex-matched control subjects underwent brain 18F-2-fluoro-2-deoxy-D-glucose PET (FDG-PET). Spatial ICA of the preprocessed FDG-PET images was performed. Intensity values were converted to z-scores and binary masks were used as data-driven VOIs. The accuracy of this classifier was tested versus a validated system processing intensity signals in 27 brain meta-VOIs. A support vector machine was independently applied to both datasets and the \u27leave-one-out\u27 technique verified the general validity of results. Principal observations: The 8 components selected as pathophysiologically meaningful discriminated patients from controls with 99.0% accuracy, the discriminating value of bilateral cerebellum/midbrain alone representing 96.3%. Among the meta-VOIs, right temporal lobe alone reached an accuracy of 93.7%. Conclusions: Spatial ICA identified in a very large cohort of ALS patients distinct spatial networks showing a high discriminatory value, improving substantially on the previously obtained accuracy. The cerebellar/midbrain component accounted for the highest accuracy in separating ALS patients from controls. Spatial ICA and multivariate analysis perform better than univariate semi-quantification methods in identifying the neurodegenerative features of ALS and pave the way for inclusion of PET in clinical trials and early diagnosis

    MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an incurable and fatal disorder characterized by the progressive loss of motor neurons in the cerebral cortex, brain stem, and spinal cord. Sporadic ALS form accounts for the majority of patients, but in 1⁻13.5% of cases the disease is inherited. The diagnosis of ALS is mainly based on clinical assessment and electrophysiological examinations with a history of symptom progression and is then made with a significant delay from symptom onset. Thus, the identification of biomarkers specific for ALS could be of a fundamental importance in the clinical practice. An ideal biomarker should display high specificity and sensitivity for discriminating ALS from control subjects and from ALS-mimics and other neurological diseases, and should then monitor disease progression within individual patients. microRNAs (miRNAs) are considered promising biomarkers for neurodegenerative diseases, since they are remarkably stable in human body fluids and can reflect physiological and pathological processes relevant for ALS. Here, we review the state of the art of miRNA biomarker identification for ALS in cerebrospinal fluid (CSF), blood and muscle tissue; we discuss advantages and disadvantages of different approaches, and underline the limits but also the great potential of this research for future practical applications

    Facial Point Graphs for Amyotrophic Lateral Sclerosis Identification

    Full text link
    Identifying Amyotrophic Lateral Sclerosis (ALS) in its early stages is essential for establishing the beginning of treatment, enriching the outlook, and enhancing the overall well-being of those affected individuals. However, early diagnosis and detecting the disease's signs is not straightforward. A simpler and cheaper way arises by analyzing the patient's facial expressions through computational methods. When a patient with ALS engages in specific actions, e.g., opening their mouth, the movement of specific facial muscles differs from that observed in a healthy individual. This paper proposes Facial Point Graphs to learn information from the geometry of facial images to identify ALS automatically. The experimental outcomes in the Toronto Neuroface dataset show the proposed approach outperformed state-of-the-art results, fostering promising developments in the area.Comment: 7 pages and 7 figure

    Early Detection of Neurodegenerative Diseases from Bio-Signals: A Machine Learning Approach

    Get PDF
    Given the fact that people, especially in advanced countries, are living longer due to the advancements in medical sciences which resulted in the prevalence of age-related diseases like Alzheimer’s and dementia. The occurrence of such diseases continues to increase and ultimately the cost of caring for these groups will become unsustainable. Addressing this issue has reached a critical point and failing to provide a strategic way forward will negatively affect patients, national health services and society as a whole.Three distinctive development stages of neurodegenerative diseases (Retrogenesis, Cognitive Impairment and Gait Impairment) motivated me to divide this research work into two main parts. To fully achieve the purpose of early detection/diagnosis, I aimed at analysing the gait signals as well as EEG signals, separately, as both of these signals severely get affected by any neurological disease.The first part of this research work focuses on the discrimination analysis of gait signals of different neurodegenerative diseases (Parkinson’s, Huntington, and Amyotrophic Lateral Sclerosis) and also of control subjects. This involves relevant feature extraction, solving the issues of imbalanced datasets and missing entries and lastly classification of multiclass datasets. For the classification and discrimination of gait signals, eleven (11) classifiers are selected representing linear, non-linear and Bayes normal classification techniques. Results revealed that three classifiers have provided us with higher accuracy rate which are UDC, LDC and PARZEN with 65%, 62.5% and 60% accuracy, respectively. Further, I proposed and developed a new classifier fusion strategy that combined classification algorithms with combining rules (voting, product, mean, median, maximum and minimum). It generates better results and classifies subjects more accurately than base-level classifiers.The last part of this research work is based on the rectification and computation of EEG signals of mild Alzheimer’s disease patients and control subjects. To detect the perturbation in EEG signals of Alzheimer’s patients, three neural synchrony measurement techniques; phase synchrony, magnitude squared coherence and cross correlation are applied on three different databases of mild Alzheimer’s disease (MiAD) patients and healthy subjects. I have compared right and left temporal parts of brain with rest of the brain area (frontal, central and occipital), as temporal regions are relatively the first ones to be affected by Alzheimer’s. Two novel methods are proposed to compute the neural synchronization of the brain; Average synchrony measure and PCA based synchrony measure. These techniques are evaluated for three different datasets of MiAD patients and control subjects using the Wilcoxon ranksum test (Mann-Whitney U test). Results demonstrated that PCA based method helped us to find more significant features that can be used as biomarkers for the early diagnosis of Alzheimer’s

    A Diagnostic Gene-Expression Signature in Fibroblasts of Amyotrophic Lateral Sclerosis

    Get PDF
    myotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease with limited treatment options. Diagnosis can be difficult due to the heterogeneity and non-specific nature of the initial symptoms, resulting in delays that compromise prompt access to effective therapeutic strategies. Transcriptome profiling of patient-derived peripheral cells represents a valuable benchmark in overcoming such challenges, providing the opportunity to identify molecular diagnostic signatures. In this study, we characterized transcriptome changes in skin fibroblasts of sporadic ALS patients (sALS) and controls and evaluated their utility as a molecular classifier for ALS diagnosis. Our analysis identified 277 differentially expressed transcripts predominantly involved in transcriptional regulation, synaptic transmission, and the inflammatory response. A support vector machine classifier based on this 277-gene signature was developed to discriminate patients with sALS from controls, showing significant predictive power in both the discovery dataset and in six independent publicly available gene expression datasets obtained from different sALS tissue/cell samples. Taken together, our findings support the utility of transcriptional signatures in peripheral cells as valuable biomarkers for the diagnosis of ALS

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    Human Gait Analysis using Spatiotemporal Data Obtained from Gait Videos

    Get PDF
    Mit der Entwicklung von Deep-Learning-Techniken sind Deep-acNN-basierte Methoden zum Standard fĂŒr Bildverarbeitungsaufgaben geworden, wie z. B. die Verfolgung menschlicher Bewegungen und PosenschĂ€tzung, die Erkennung menschlicher AktivitĂ€ten und die Erkennung von Gesichtern. Deep-Learning-Techniken haben den Entwurf, die Implementierung und den Einsatz komplexer und vielfĂ€ltiger Anwendungen verbessert, die nun in einer Vielzahl von Bereichen, einschließlich der Biomedizintechnik, eingesetzt werden. Die Anwendung von Computer-Vision-Techniken auf die medizinische Bild- und Videoanalyse hat zu bemerkenswerten Ergebnissen bei der Erkennung von Ereignissen gefĂŒhrt. Die eingebaute FĂ€higkeit von convolutional neural network (CNN), Merkmale aus komplexen medizinischen Bildern zu extrahieren, hat in Verbindung mit der FĂ€higkeit von long short term memory network (LSTM), die zeitlichen Informationen zwischen Ereignissen zu erhalten, viele neue Horizonte fĂŒr die medizinische Forschung geschaffen. Der Gang ist einer der kritischen physiologischen Bereiche, der viele Störungen im Zusammenhang mit Alterung und Neurodegeneration widerspiegeln kann. Eine umfassende und genaue Ganganalyse kann Einblicke in die physiologischen Bedingungen des Menschen geben. Bestehende Ganganalyseverfahren erfordern eine spezielle Umgebung, komplexe medizinische GerĂ€te und geschultes Personal fĂŒr die Erfassung der Gangdaten. Im Falle von tragbaren Systemen kann ein solches System die kognitiven FĂ€higkeiten beeintrĂ€chtigen und fĂŒr die Patienten unangenehm sein. Außerdem wurde berichtet, dass die Patienten in der Regel versuchen, wĂ€hrend des Labortests bessere Leistungen zu erbringen, was möglicherweise nicht ihrem tatsĂ€chlichen Gang entspricht. Trotz technologischer Fortschritte stoßen wir bei der Messung des menschlichen Gehens in klinischen und Laborumgebungen nach wie vor an Grenzen. Der Einsatz aktueller Ganganalyseverfahren ist nach wie vor teuer und zeitaufwĂ€ndig und erschwert den Zugang zu SpezialgerĂ€ten und Fachwissen. Daher ist es zwingend erforderlich, ĂŒber Methoden zu verfĂŒgen, die langfristige Daten ĂŒber den Gesundheitszustand des Patienten liefern, ohne doppelte kognitive Aufgaben oder Unannehmlichkeiten bei der Verwendung tragbarer Sensoren. In dieser Arbeit wird daher eine einfache, leicht zu implementierende und kostengĂŒnstige Methode zur Erfassung von Gangdaten vorgeschlagen. Diese Methode basiert auf der Aufnahme von Gehvideos mit einer Smartphone-Kamera in einer hĂ€uslichen Umgebung unter freien Bedingungen. Deep neural network (NN) verarbeitet dann diese Videos, um die Gangereignisse zu extrahieren. Die erkannten Ereignisse werden dann weiter verwendet, um verschiedene rĂ€umlich-zeitliche Parameter des Gangs zu quantifizieren, die fĂŒr jedes Ganganalysesystem wichtig sind. In dieser Arbeit wurden Gangvideos verwendet, die mit einer Smartphone-Kamera mit geringer Auflösung außerhalb der Laborumgebung aufgenommen wurden. Viele Deep- Learning-basierte NNs wurden implementiert, um die grundlegenden Gangereignisse wie die Fußposition in Bezug auf den Boden aus diesen Videos zu erkennen. In der ersten Studie wurde die Architektur von AlexNet verwendet, um das Modell anhand von Gehvideos und öffentlich verfĂŒgbaren DatensĂ€tzen von Grund auf zu trainieren. Mit diesem Modell wurde eine Gesamtgenauigkeit von 74% erreicht. Im nĂ€chsten Schritt wurde jedoch die LSTM-Schicht in dieselbe Architektur integriert. Die eingebaute FĂ€higkeit von LSTM in Bezug auf die zeitliche Information fĂŒhrte zu einer verbesserten Vorhersage der Etiketten fĂŒr die Fußposition, und es wurde eine Genauigkeit von 91% erreicht. Allerdings gibt es Schwierigkeiten bei der Vorhersage der richtigen Bezeichnungen in der letzten Phase des Schwungs und der Standphase jedes Fußes. Im nĂ€chsten Schritt wird das Transfer-Lernen eingesetzt, um die Vorteile von bereits trainierten tiefen NNs zu nutzen, indem vortrainierte Gewichte verwendet werden. Zwei bekannte Modelle, inceptionresnetv2 (IRNV-2) und densenet201 (DN-201), wurden mit ihren gelernten Gewichten fĂŒr das erneute Training des NN auf neuen Daten verwendet. Das auf Transfer-Lernen basierende vortrainierte NN verbesserte die Vorhersage von Kennzeichnungen fĂŒr verschiedene Fußpositionen. Es reduzierte insbesondere die Schwankungen in den Vorhersagen in der letzten Phase des Gangschwungs und der Standphase. Bei der Vorhersage der Klassenbezeichnungen der Testdaten wurde eine Genauigkeit von 94% erreicht. Da die Abweichung bei der Vorhersage des wahren Labels hauptsĂ€chlich ein Bild betrug, konnte sie bei einer Bildrate von 30 Bildern pro Sekunde ignoriert werden. Die vorhergesagten Markierungen wurden verwendet, um verschiedene rĂ€umlich-zeitliche Parameter des Gangs zu extrahieren, die fĂŒr jedes Ganganalysesystem entscheidend sind. Insgesamt wurden 12 Gangparameter quantifiziert und mit der durch Beobachtungsmethoden gewonnenen Grundwahrheit verglichen. Die NN-basierten rĂ€umlich-zeitlichen Parameter zeigten eine hohe Korrelation mit der Grundwahrheit, und in einigen FĂ€llen wurde eine sehr hohe Korrelation erzielt. Die Ergebnisse belegen die NĂŒtzlichkeit der vorgeschlagenen Methode. DerWert des Parameters ĂŒber die Zeit ergab eine Zeitreihe, eine langfristige Darstellung des Ganges. Diese Zeitreihe konnte mit verschiedenen mathematischen Methoden weiter analysiert werden. Als dritter Beitrag in dieser Dissertation wurden Verbesserungen an den bestehenden mathematischen Methoden der Zeitreihenanalyse von zeitlichen Gangdaten vorgeschlagen. Zu diesem Zweck werden zwei Verfeinerungen bestehender entropiebasierter Methoden zur Analyse von Schrittintervall-Zeitreihen vorgeschlagen. Diese Verfeinerungen wurden an Schrittintervall-Zeitseriendaten von normalen und neurodegenerativen Erkrankungen validiert, die aus der öffentlich zugĂ€nglichen Datenbank PhysioNet heruntergeladen wurden. Die Ergebnisse zeigten, dass die von uns vorgeschlagene Methode eine klare Trennung zwischen gesunden und kranken Gruppen ermöglicht. In Zukunft könnten fortschrittliche medizinische UnterstĂŒtzungssysteme, die kĂŒnstliche Intelligenz nutzen und von den hier vorgestellten Methoden abgeleitet sind, Ärzte bei der Diagnose und langfristigen Überwachung des Gangs von Patienten unterstĂŒtzen und so die klinische Arbeitsbelastung verringern und die Patientensicherheit verbessern
    • 

    corecore