3,822 research outputs found

    Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized Fading Channels

    No full text
    International audienceIn this paper, we study the performance of Spatial Modulation (SM-) Multiple-Input-Multiple-Output (MIMO) wireless systems over generic fading channels. More precisely, a comprehensive analytical framework to compute the Average Bit Error Probability (ABEP) is introduced, which can be used for any MIMO setups, for arbitrary correlated fading channels, and for generic modulation schemes. It is shown that, when compared to state-of-the-art literature, our framework: i) has more general applicability over generalized fading channels; ii) is, in general, more accurate as it exploits an improved union-bound method; and, iii) more importantly, clearly highlights interesting fundamental trends about the performance of SM, which are difficult to capture with available frameworks. For example, by focusing on the canonical reference scenario with independent and identically distributed (i.i.d.) Rayleigh fading, we introduce very simple formulas which yield insightful design information on the optimal modulation scheme to be used for the signal- constellation diagram, as well as highlight the different role played by the bit mapping on the signal- and spatial-constellation diagrams. Numerical results show that, for many MIMO setups, SM with Phase Shift Keying (PSK) modulation outperforms SM with Quadrature Amplitude Modulation (QAM), which is a result never reported in the literature. Also, by exploiting asymptotic analysis, closed-form formulas of the performance gain of SM over other single-antenna transmission technologies are provided. Numerical results show that SM can outperform many single-antenna systems, and that for any transmission rate there is an optimal allocation of the information bits onto spatial- and signal-constellation diagrams. Furthermore, by focusing on the Nakagami-m fading scenario with generically correlated fading, we show that the fading severity plays a very important role in determining the diversity gain of SM. In particular, the performance gain over single-antenna systems increases for fading channels less severe than Rayleigh fading, while it gets smaller for more severe fading channels. Also, it is shown that the impact of fading correlation at the transmitter is reduced for less severe fading. Finally, analytical frameworks and claims are substantiated through extensive Monte Carlo simulations

    Fundamental Limits in Correlated Fading MIMO Broadcast Channels: Benefits of Transmit Correlation Diversity

    Full text link
    We investigate asymptotic capacity limits of the Gaussian MIMO broadcast channel (BC) with spatially correlated fading to understand when and how much transmit correlation helps the capacity. By imposing a structure on channel covariances (equivalently, transmit correlations at the transmitter side) of users, also referred to as \emph{transmit correlation diversity}, the impact of transmit correlation on the power gain of MIMO BCs is characterized in several regimes of system parameters, with a particular interest in the large-scale array (or massive MIMO) regime. Taking the cost for downlink training into account, we provide asymptotic capacity bounds of multiuser MIMO downlink systems to see how transmit correlation diversity affects the system multiplexing gain. We make use of the notion of joint spatial division and multiplexing (JSDM) to derive the capacity bounds. It is advocated in this paper that transmit correlation diversity may be of use to significantly increase multiplexing gain as well as power gain in multiuser MIMO systems. In particular, the new type of diversity in wireless communications is shown to improve the system multiplexing gain up to by a factor of the number of degrees of such diversity. Finally, performance limits of conventional large-scale MIMO systems not exploiting transmit correlation are also characterized.Comment: 29 pages, 8 figure

    From Multi-Keyholes to Measure of Correlation and Power Imbalance in MIMO Channels: Outage Capacity Analysis

    Full text link
    An information-theoretic analysis of a multi-keyhole channel, which includes a number of statistically independent keyholes with possibly different correlation matrices, is given. When the number of keyholes or/and the number of Tx/Rx antennas is large, there is an equivalent Rayleigh-fading channel such that the outage capacities of both channels are asymptotically equal. In the case of a large number of antennas and for a broad class of fading distributions, the instantaneous capacity is shown to be asymptotically Gaussian in distribution, and compact, closed-form expressions for the mean and variance are given. Motivated by the asymptotic analysis, a simple, full-ordering scalar measure of spatial correlation and power imbalance in MIMO channels is introduced, which quantifies the negative impact of these two factors on the outage capacity in a simple and well-tractable way. It does not require the eigenvalue decomposition, and has the full-ordering property. The size-asymptotic results are used to prove Telatar's conjecture for semi-correlated multi-keyhole and Rayleigh channels. Since the keyhole channel model approximates well the relay channel in the amplify-and-forward mode in certain scenarios, these results also apply to the latterComment: accepted by IEEE IT Trans., 201

    Analysis of cyclic delay diversity on DVB-H systems over spatially correlated channel

    Get PDF
    The objective of this work is to research and analyze the performance of Cyclic Delay Diversity (CDD) with two transmit antenna on DVB-H systems operating in spatially correlated channel. It is shown in this paper that CDD can achieve desirable transmit diversity gain over uncorrelated channel with or without receiver diversity. However, in reality, the respective signal paths between spatially separated antennas and the mobile receiver is likely to be correlated because of insufficient antenna separation at the transmitter and the lack of scattering effect of the channel. Under this spatially correlated channel, it is apparent that CDD cannot achieve the same diversity gain as obtained under the uncorrelated channel. In this paper, a new upper bound on the pairwise error probability (PEP) of the CDD with spatial correlation of two transmit antennas is derived. The upper bound is used to study the CDD theoretical error performance and diversity gain losses over a generalized spatially correlated Rayleigh channel. This theoretical analysis is validated by the simulation of DVB-H systems with two transmit antennas and the CDD scheme. Both the theoretical and simulated results give the valuable insight that the CDD ability to perform well with a certain amount of channel correlation

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application
    corecore