32,858 research outputs found

    Long-term impacts of battery electric vehicles on the German electricity system

    Get PDF
    The emerging market for electric vehicles gives rise to an additional electricity demand. This new electricity demand will affect the electricity system. For quantifying those impacts a model-based approach, which covers long-term time horizons is necessary in order to consider the long lasting investment paths in electricity systems and the market development of electric mobility. Therefore, we apply a bottom-up electricity system model showing a detailed spatial resolution for different development paths of electric mobility in Germany until 2030. This model is based on a linear optimization which minimizes the discounted costs of the electricity system. We observe an increase of electricity exchange between countries and electricity generated by renewable energy sources. One major result turns out to be that electric vehicles can be integrated in the electricity system without increasing the system costs when a controlled (postponing) charging strategy for electric vehicles is applied. The impact on the power plant portfolio is insignificant. Another important side effect of electric vehicles is their substantial contribution to decreasing CO2 emissions of the German transport sector. Hence, electric mobility might be an integral part of a sustainable energy system of tomorrow

    Energy Use and Emissions Impacts from Car Technologies Market Scenarios: A Multi-Country System Dynamics Model

    Get PDF
    In the context of high energy use and greenhouse gas emissions from road passenger transport, the prospects of market diffusion of new car technologies is at present time uncertain. For instance, the impact of current oil prices on the market uptake of electric vehicles is yet to be seen. Systems thinking and scenario analysis are useful to explore possible future outcomes. This paper focuses on car technologies scenarios for the Chinese, German and US markets until 2030. The technologies investigated are: gasoline, diesel, flexi-fuel, liquefied petroleum gas, natural gas, hybrid, plug-in hybrid, battery electric and fuel cell vehicles. Based on the System Dynamics approach, a model integrating discrete choice and accounting frameworks is developed. The developed System Dynamics model is applied to examine alternative policies and to estimate energy use and emissions in each of the markets under various scenarios. The model results illustrate the importance of taking indirect emissions into account. In conclusion, simulated policies sensibly alter car technology uptake and have an impact on the environment. Finally, the ideas of feedback process and expansion of model boundaries are considered to be crucial in modeling such a complex and uncertain system

    Comparison of energy consumption and costs of different HEVs and PHEVs in European and American context

    Get PDF
    This paper will analyse on the one hand the potential of Plug in Hybrid electric Vehicles to significantly reduce fuel consumption and displace it torward various primary energies thanks to the electricity sector. On the other hand the total cost of ownership of two different PHEV architectures will be compared to a conventional cehicle and a HEV without external charging

    Optimisation algorithms for the charge dispatch of plug-in vehicles based on variable tariffs

    Get PDF
    Plug-in vehicles powered by renewable energies are a viable way to reduce local and total emissions and could also support a highly efficient grid operation. Indirect control by variable tariffs is one option to link charging or even discharging time with the grid load and the renewable energy production. Algorithms are required to develop tariffs and evaluate grid impacts of variable tariffs for electric vehicles (BEV) as well as to schedule the charging process optimisation. Therefore a combinatorial optimisation algorithm is developed and an algorithm based on graph search is used and customised. Both algorithms are explained and compared by performance and adequate applications. The developing approach and the correctness of the quick combinatorial algorithm are proved within this paper. For vehicle to grid (V2G) concepts, battery degradation costs have to be considered. Therefore, common life cycle assumptions based on the battery state of charge (SoC) have been used to include degradation costs for different Li-Ion batteries into the graph search algorithm. An application of these optimisation algorithms, like the onboard dispatcher, which is used in the German fleet test "Flottenversuch Elektromobiliät". Grid impact calculations based on the optimisation algorithm are shown. --BEV,V2G,Plug-In-Vehicles (PHEV),optimisation,mobile dispatcher,demand side management,charging,combinatorial algorithm,graph search algorithm,indirect control by variable tariffs

    Materials Handling Vehicles : Policy Framework for an Emerging Fuel Cell Market

    Get PDF
    © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Canadian Hydrogen and Fuel Cell Association. Open access under CC BY-NC-ND licenseThere are several challenges to wide-spread commercialisation of the technology hydrogen fuel-cell technology; including reliability and cost implications, infrastructure requirements, and safety aspects of the upcoming technology. Targeted policy initiatives are required to address two significant bottlenecks; reliability and cost constraints. Such policy measures and financial mechanisms providing incentives for manufacturers and end-users of the novel technology create an initial impetus for the introduction of the forthcoming technology into the market place. The current approach, policy mechanisms and their impacts are reviewed in the context of demonstration projects, deploying material handling equipment, involving public-private initiatives.Final Published versio

    Optimizing plug-in electric vehicle charging in interaction with a small office building

    Get PDF
    This paper considers the integration of plug-in electric vehicles (PEVs) in micro-grids. Extending a theoretical framework for mobile storage connection, the economic analysis here turns to the interactions of commuters and their driving behavior with office buildings. An illustrative example for a real office building is reported. The chosen system includes solar thermal, photovoltaic, combined heat and power generation as well as an array of plug-in electric vehicles with a combined aggregated capaci-ty of 864 kWh. With the benefit-sharing mechanism proposed here and idea-lized circumstances, estimated cost savings of 5% are possible. Different pricing schemes were applied which include flat rates, demand charges, as well as hourly variable final customer tariffs and their effects on the operation of intermittent storage were revealed and examined in detail. Because the plug-in electric vehicle connection coincides with peak heat and electricity loads as well as solar radiation, it is possible to shift energy demand as desired in order to realize cost savings. --Battery storage,building management systems,dispersed storage and generation,electric vehicles,load management,microgrid,optimization methods,power system economics,road vehicle electric propulsion
    • …
    corecore