4,768 research outputs found

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    An architecture and technology for Ambient Intelligence Node

    Get PDF
    The era of separate networks is over. The existing technology leaders are preparing a big change in recreation of environment around us. There are several faces for this change. Names like Ambient Intelligence, Ambient Network, IP Multimedia Subsystem and others were created all over the Globe. Regardless of which name is used the new network will combine three main functional principles---it will be: contextual aware, ubiquitous access and intelligent interfaces unified network. Within this thesis two major aspects are defined. First, the definition of the Ambient Intelligence Environment concept is presented. Secondly the architecture vectors for the technology are named. A short overview of the existing technology is followed by details for the chosen technology---FPGA. The overall specifications are incorporated in the design and demonstration of a basic Ambient Intelligence Node created in the System on the Chip (SoC) FPGA technology

    Energy-aware MPC co-design for DC-DC converters

    Get PDF
    In this paper, we propose an integrated controller design methodology for the implementation of an energy-aware explicit model predictive control (MPC) algorithms, illustrat- ing the method on a DC-DC converter model. The power consumption of control algorithms is becoming increasingly important for low-power embedded systems, especially where complex digital control techniques, like MPC, are used. For DC-DC converters, digital control provides better regulation, but also higher energy consumption compared to standard analog methods. To overcome the limitation in energy efficiency, instead of addressing the problem by implementing sub-optimal MPC schemes, the closed-loop performance and the control algorithm power consumption are minimized in a joint cost function, allowing us to keep the controller power efficiency closer to an analog approach while maintaining closed-loop op- timality. A case study for an implementation in reconfigurable hardware shows how a designer can optimally trade closed-loop performance with hardware implementation performance

    Aeronautical Data Networks

    Get PDF

    Development of a Reference Design for a Cyber-Physical System

    Get PDF
    The purpose of this thesis is to develop a reference design to assist in the selection of security practices in power electronics design. A prototype will be developed from this reference design for evaluation. This evaluation will include a brief cost/benefit analysis to gauge the efficacy of implementing each layer of security throughout the power electronics design process. This thesis will also describe the obstacles and effectiveness of integrating a Trusted Platform Module (TPM) into a cyber-hardened grid-connected device. The TPM device is a secured crypto processor that assists in generating, storing, and restricting the use of cryptographic keys. The emphasis of this research is to establish integrity, authenticity, and confidentiality within a system by providing a baseline of security concerns for segments of the system. This research considers communication, control, and hardware level securities. The scope of this thesis will review the necessary security methods as well as consider the effects these methods have on the embedded system, to assess the desired security to responsiveness trade off. Applying this approach to a design process will alleviate various unknowns of appending security to a power electronics design. This thesis describes the specific vulnerabilities introduced within this grid-edge environment, and how the liabilities within the system can be mitigated. Initially, common security techniques will be considered to establish a guideline to benchmark performance and resource costs of the system. The foundation will be a non-hardened power electronic system platform with industry standard communication protocols. Several security techniques and attack vectors will then be evaluated to contribute to the base level platform. Other fail-safe features take place to gauge progress of the selected approach, non-inclusive to the TPM. Collectively, this investigation will determine a valid experiment by appraising and categorizing resource allocation, performance overhead, and monetary cost analysis results into a reference design. The prototype will then demonstrate methods to relieve common threats that are purposefully implemented into the design
    • …
    corecore