1,019 research outputs found

    Colour reverse learning and animal personalities: the advantage of behavioural diversity assessed with agent-based simulations

    Get PDF
    Foraging bees use colour cues to help identify rewarding from unrewarding flowers, but as conditions change, bees may require behavioural flexibility to reverse their learnt preferences. Perceptually similar colours are learnt slowly by honeybees and thus potentially pose a difficult task to reverse-learn. Free-flying honeybees (N = 32) were trained to learn a fine colour discrimination task that could be resolved at ca. 70% accuracy following extended differential conditioning, and were then tested for their ability to reverse-learn this visual problem multiple times. Subsequent analyses identified three different strategies: ‘Deliberative-decisive’ bees that could, after several flower visits, decisively make a large change to learnt preferences; ‘Fickle- circumspect’ bees that changed their preferences by a small amount every time they encountered evidence in their environment; and ‘Stay’ bees that did not change from their initially learnt preference. The next aim was to determine if there was any advantage to a colony in maintaining bees with a variety of decision-making strategies. To understand the potential benefits of the observed behavioural diversity agent-based computer simulations were conducted by systematically varying parameters for flower reward switch oscillation frequency, flower handling time, and fraction of defective ‘target’ stimuli. These simulations revealed that when there is a relatively high frequency of reward reversals, fickle-circumspect bees are more efficient at nectar collection. However, as the reward reversal frequency decreases the performance of deliberative-decisive bees becomes most efficient. These findings show there to be an evolutionary benefit for honeybee colonies with individuals exhibiting these different strategies for managing resource change. The strategies have similarities to some complex decision-making processes observed in humans, and algorithms implemented in artificial intelligence systems

    Creativity and Autonomy in Swarm Intelligence Systems

    Get PDF
    This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor

    Collaborative search on the plane without communication

    Get PDF
    We generalize the classical cow-path problem [7, 14, 38, 39] into a question that is relevant for collective foraging in animal groups. Specifically, we consider a setting in which k identical (probabilistic) agents, initially placed at some central location, collectively search for a treasure in the two-dimensional plane. The treasure is placed at a target location by an adversary and the goal is to find it as fast as possible as a function of both k and D, where D is the distance between the central location and the target. This is biologically motivated by cooperative, central place foraging such as performed by ants around their nest. In this type of search there is a strong preference to locate nearby food sources before those that are further away. Our focus is on trying to find what can be achieved if communication is limited or altogether absent. Indeed, to avoid overlaps agents must be highly dispersed making communication difficult. Furthermore, if agents do not commence the search in synchrony then even initial communication is problematic. This holds, in particular, with respect to the question of whether the agents can communicate and conclude their total number, k. It turns out that the knowledge of k by the individual agents is crucial for performance. Indeed, it is a straightforward observation that the time required for finding the treasure is Ω\Omega(D + D 2 /k), and we show in this paper that this bound can be matched if the agents have knowledge of k up to some constant approximation. We present an almost tight bound for the competitive penalty that must be paid, in the running time, if agents have no information about k. Specifically, on the negative side, we show that in such a case, there is no algorithm whose competitiveness is O(log k). On the other hand, we show that for every constant \epsilon \textgreater{} 0, there exists a rather simple uniform search algorithm which is O(log1+ϵk)O( \log^{1+\epsilon} k)-competitive. In addition, we give a lower bound for the setting in which agents are given some estimation of k. As a special case, this lower bound implies that for any constant \epsilon \textgreater{} 0, if each agent is given a (one-sided) kϵk^\epsilon-approximation to k, then the competitiveness is Ω\Omega(log k). Informally, our results imply that the agents can potentially perform well without any knowledge of their total number k, however, to further improve, they must be given a relatively good approximation of k. Finally, we propose a uniform algorithm that is both efficient and extremely simple suggesting its relevance for actual biological scenarios

    Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    Get PDF
    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’

    Chain of command in autonomous cooperative agents for battles in real-time strategy games

    Get PDF
    This paper investigates incorporating chain of command in swarm intelligence of honey bees to create groups of ranked co-operative autonomous agents for an RTS game in to create and re-enact battle simulations. The behaviour of the agents are based on the foraging and defensive behaviours of honey bees, adapted to a human environment. The chain of command is implemented using a hierarchical decision model. The groups consist of multiple model-based reflex agents, with individual blackboards for working memory, with a colony level blackboard to mimic the foraging patterns and include commands received from ranking agents. An agent architecture and environment are proposed that allows for creation of autonomous cooperative agents. The behaviour of agents is then evaluated both mathematically and empirically using an adaptation of anytime universal intelligence test and agent believability metric

    Positional Communication and Private Information in Honeybee Foraging Models

    Get PDF
    Honeybees coordinate foraging efforts across vast areas through a complex system of advertising and recruitment. One mechanism for coordination is the waggle dance, a movement pattern which carries positional information about food sources. However, recent evidence suggests that recruited foragers may not use the dance’s positional information to the degree that has traditionally been believed. We model bee colony foraging to investigate the value of sharing food source position information in different environments. We find that in several environments, relying solely on private information about previously encountered food sources is more efficient than sharing information. Relying on private information leads to a greater diversity of forage sites and can decrease over-harvesting of sources. This is beneficial in environments with small quantities of nectar per flower, but may be detrimental in nectar-rich environments. Efficiency depends on both the environment and a balance between exploiting high-quality food sources and oversubscribing them.Engineering and Applied Science

    Bioinspired Computing: Swarm Intelligence

    Get PDF
    corecore