110 research outputs found

    An exploration and validation of computer modeling of evolution, natural selection, and evolutionary biology with cellular automata for secondary students.

    Get PDF
    The Evolutionary Tool Kit, a new software package, is the prototype of a concept simulator providing an environment for students to create microworlds of populations of artificial organisms. Its function is to model processes, concepts and arguments in natural selection and evolutionary biology, using either Mendelian asexual or sexual reproduction, or counterfactual systems such as \u27paint pot\u27 or blending inheritance. In this environment students can explore a conceptual What if? in evolutionary biology, test misconceptions and deepen understanding of inheritance and changes in populations. Populations can be defined either with typological, or with populational thinking, to inquire into the role and necessity of variation in natural selection. The approach is generative not tutorial. The interface is highly graphic with twenty traits set as icons that are moved onto the \u27phenotypes\u27. Activities include investigations of evolutionary theory of aging, reproductive advantage, sexual selection and mimicry. Design of the activities incorporates Howard Gardner\u27s Theory of Multiple Intelligences. Draft of a teacher and student manual are included

    A Survey of Agent-Based Modeling Practices (January 1998 to July 2008)

    Get PDF
    In the 1990s, Agent-Based Modeling (ABM) began gaining popularity and represents a departure from the more classical simulation approaches. This departure, its recent development and its increasing application by non-traditional simulation disciplines indicates the need to continuously assess the current state of ABM and identify opportunities for improvement. To begin to satisfy this need, we surveyed and collected data from 279 articles from 92 unique publication outlets in which the authors had constructed and analyzed an agent-based model. From this large data set we establish the current practice of ABM in terms of year of publication, field of study, simulation software used, purpose of the simulation, acceptable validation criteria, validation techniques and complete description of the simulation. Based on the current practice we discuss six improvements needed to advance ABM as an analysis tool. These improvements include the development of ABM specific tools that are independent of software, the development of ABM as an independent discipline with a common language that extends across domains, the establishment of expectations for ABM that match their intended purposes, the requirement of complete descriptions of the simulation so others can independently replicate the results, the requirement that all models be completely validated and the development and application of statistical and non-statistical validation techniques specifically for ABM.Agent-Based Modeling, Survey, Current Practices, Simulation Validation, Simulation Purpose

    Modeling human and organizational behavior using a relation-centric multi-agent system design paradigm

    Get PDF
    Today's modeling and simulation communities are being challenged to create rich, detailed models incorporating human decision-making and organizational behavior. Recent advances in distributed artificial intelligence and complex systems theory have demonstrated that such ill-defined problems can be effectively modeled with agent-based simulation techniques using multiple, autonomoous, adaptive entities. RELATE, a relation-centric design paradigm for multi-agent systems (MAS), is presented to assist developers incorporate MAS solutions into their simulations. RELATe focuses the designer on six key concepts of MAS simulations: relationships, environment, laws, agents, things, and effectors. A library of Java classes is presented which enables the user to rapidly prototype an agent-based simulation. This library utilizes the Java programming language to support cross-platform and web based designs. All Java classes and interfaces are fully documented using HTML Javadoc format. Two reference cases are provided that allow for easy code reuse and modification. Finally, an existing metworked DIS-Java-VRML simulation was modified to demonstrate the ability to utilize the RELATE library to add agents to existing applications. LCDR Kim Roddy focused on the development and refinement of the RELATE design paradigm, while LT Mike Dickson focused on the actual Java implementation. Joint work was conducted on all research and reference caseshttp://www.archive.org/details/modelinghumanorg00roddU.S. Navy (U.S.N.) author
    corecore