1,029 research outputs found

    AN EXAMINATION OF THE IMPACT OF COMPUTER-BASED ANIMATIONS AND VISUALIZATION SEQUENCE ON LEARNERS' UNDERSTANDING OF HADLEY CELLS IN ATMOSPHERIC CIRCULATION

    Get PDF
    Research examining animation use for student learning has been conducted in the last two decades across a multitude of instructional environments and content areas. The extensive construction and implementation of animations in learning resulted from the availability of powerful computing systems and the perceived advantages the novel medium offered to deliver dynamic representations of complex systems beyond the human perceptual scale. Animations replaced or supplemented text and static diagrams of system functioning and were predicted to significantly improve learners' conceptual understanding of target systems. However, subsequent research has not consistently discovered affordances to understanding, and in some cases, has actually shown that animation use is detrimental to system understanding especially for content area novices (Lowe 2004; Mayer et al. 2005). This study sought to determine whether animation inclusion in an authentic learning context improved student understanding for an introductory earth science concept, Hadley Cell circulation. In addition, the study sought to determine whether the timing of animation examination improved conceptual understanding. A quasi-experimental pretest posttest design administered in an undergraduate science lecture and laboratory course compared four different learning conditions: text and static diagrams with no animation use, animation use prior to the examination of text and static diagrams, animation use following the examination of text and static diagrams, and animation use during the examination of text and static diagrams. Additionally, procedural data for a sample of three students in each condition were recorded and analyzed through the lens of self regulated learning (SRL) behaviors. The aim was to determine whether qualitative differences existed between cognitive processes employed. Results indicated that animation use did not improve understanding across all conditions. However learners able to employ animations while reading and examining the static diagrams and to a lesser extent, after reading the system description, showed evidence of higher levels of system understanding on posttest assessments. Procedural data found few differences between groups with one exception---learners given access to animations during the learning episode chose to examine and coordinate the representations more frequently. These results indicated a new finding from the use of animation, a sequence effect to improve understanding of Hadley Cells in atmospheric circulation

    Interactive Computer Simulation and Animation Learning Modules: A Mixed-Method Study of Their Effects on Students\u27 Problem Solving in Particle Dynamics

    Get PDF
    Computer simulation and animation (CSA) has been receiving growing attention and wide application in the engineering education community. The goal of this dissertation research was to improve students\u27 conceptual understanding and procedural skills for solving particle dynamics problems, by developing, implementing and assessing 12 interactive computer simulation and animation learning modules. The developed CSA learning modules integrate visualization with mathematical modeling to help students directly connect engineering dynamics with mathematics. These CSA modules provide a constructivist environment where students can study physical laws, demonstrate mental models, make predictions, derive conclusions, and solve problems. A mixed-method research was conducted in this study: quasi-experimental method (quantitative), and survey questionnaires and interviews (qualitative and quantitative). Quasi-experimental research involving an intervention group and a comparison group was performed to investigate the extent that the developed CSA learning modules improved students\u27 conceptual understanding and procedural skills in solving particle dynamics problems. Surveys and interviews were administrated to examine students\u27 learning attitudes toward and experiences with the developed CSA learning modules. The results of quasi-experimental research show that the 12 CSA learning modules developed for this study increased students\u27 class-average conceptual and procedural learning gains by 29% and 40%, respectively. Therefore, these developed CSA modules significantly improved students\u27 conceptual understanding and procedural skills for solving particle dynamics problems. The survey and interview results show that students had a positive experience with CSA learning

    Placing Birds On A Dynamic Evolutionary Map: Using Digital Tools To Update The Evolutionary Metaphor Of The Tree Of Life

    Get PDF
    This dissertation describes and presents a new type of interactive visualization for communicating about evolutionary biology, the dynamic evolutionary map. This web-based tool utilizes a novel map-based metaphor to visualize evolution, rather than the traditional tree of life. The dissertation begins with an analysis of the conceptual affordances of the traditional tree of life as the dominant metaphor for evolution. Next, theories from digital media, visualization, and cognitive science research are synthesized to support the assertion that digital media tools can extend the types of visual metaphors we use in science communication in order to overcome conceptual limitations of traditional metaphors. These theories are then applied to a specific problem of science communication, resulting in the dynamic evolutionary map. Metaphor is a crucial part of scientific communication, and metaphor-based scientific visualizations, models, and analogies play a profound role in shaping our ideas about the world around us. Users of the dynamic evolutionary map interact with evolution in two ways: by observing the diversification of bird orders over time and by examining the evidence for avian evolution at several places in evolutionary history. By combining these two types of interaction with a non-traditional map metaphor, evolution is framed in a novel way that supplements traditional metaphors for communicating about evolution. This reframing in turn suggests new conceptual affordances to users who are learning about evolution. Empirical testing of the dynamic evolutionary map by biology novices suggests that this approach is successful in communicating evolution differently than in existing tree-based visualization methods. Results of evaluation of the map by biology experts suggest possibilities for future enhancement and testing of this visualization that would help refine these successes. This dissertation represents an important step forward in the synthesis of scientific, design, and metaphor theory, as applied to a specific problem of science communication. The dynamic evolutionary map demonstrates that these theories can be used to guide the construction of a visualization for communicating a scientific concept in a way that is both novel and grounded in theory. There are several potential applications in the fields of informal science education, formal education, and evolutionary biology for the visualization created in this dissertation. Moreover, the approach suggested in this dissertation can potentially be extended into other areas of science and science communication. By placing birds onto the dynamic evolutionary map, this dissertation points to a way forward for visualizing science communication in the futur

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Using an e-learning tool to overcome difficulties in learning object-oriented programming

    Get PDF
    This study was motivated by the need to overcome the pedagogical hindrances experienced by introductory object-oriented programming students in order to address the high attrition rate evident among novice programmers in distance education. The initial phase of the research process involved exploring a variety of alternative visual programming environments for novices. Thereafter the selection process detailed several requirements that would define the ideal choice of the most appropriate tool. An educational tool Raptor was selected. Lastly, the core focus of this mixed method research was to evaluate undergraduate UNISA students’ perceptions of the Raptor e-learning tools with respect to the perceived effectiveness in enhancing novices’ learning experience, in an attempt to lower the barriers to object-oriented programming. Students’ perceptions collectively of the Raptor visual tool were positive and despite the fact that the sample size was too small to achieve statistical significance, these quantitative and qualitative results provide the practical basis for implementing Raptor in future. Thus providing learning opportunities suited to learner interests and needs, can lead to an enormous potential to stimulate individuals’ motivation and development in creating a more positive learning experience to overcome barriers in programming and enhance concept understanding to address the diverse needs of students in distance education that could lead to a reduced dropout rate.ComputingM. Sc. (Computing

    The Effects Of Presentation Mode And Pace On Learning Immunology With Computer Simulation A Cognitive Evaluation Of A Multimedia Learning Resource

    Get PDF
    Multimedia learning tools have the potential to benefit instructors and learners as supplemental learning materials. However, when such tools are designed inappropriately, this can increase cognitive taxation and impede learning, rendering the tools ineffective. Guided by the theoretical underpinnings provided by cognitive load theory and the cognitive theory of multimedia learning, this study sought to empirically evaluate the effectiveness of a multimedia simulation tool aimed at teaching immunology to novices in an instructional setting. The instructional mode and pace of the tool were manipulated, the three levels of each variable yielding nine experimental groups. The effects of mode and pace on workload and learning scores were observed. The results of this study did not support the theory-driven hypotheses. No significant learning gains were found between the configuration groups, however overall significant learning gains were subsequently found when disregarding mode and pace configuration. Pace was found to influence workload such that fast pace presentations significantly increased workload ratings and a significant interaction of mode and pace was found for workload ratings. The findings suggest that the learning material was too high in intrinsic load and the working memory of the learners too highly taxed for the benefits of applying the design principles to be observed. Results also illustrate a potential exception to the conditions of the design principles when complex terminology is to be presented. Workload findings interpreted in the context of stress adaptation potentially indicate points at which learners at maximum capacity begin to exhibit performance decrements

    Development, implementation and evaluation of an interactive multimedia instructional model : A teaching and learning programming approach

    Get PDF
    This study sought to explore the outcomes from the use of a dynamic interactive visualisation tool among novice programmers in an introductory computer programming course. The proposed model, Dynamic Interactive Visualisation Tool in Teaching C (DIVTIC), was designed to use multimedia and visual imagery to provide learners with a step-by-step representation of program execution in the C language as a means of enhancing their understanding of programming structures and concepts. DIVTIC was designed to support constructivist learning principles and combined collaborative and visualisation learning strategies with use of the Internet and the World Wide Web to support the learning of programming. The feasibility and effectiveness of DIVTIC was explored among a cohort of 100 undergraduate engineering students, 50 in a control group and another 50 in an experimental group, studying an introductory programming course at Suranaree University of Technology (SUT) in Thailand, The study found that the use of DIVTIC was a successful complement to conventional teaching. The results clearly demonstrated the advantage of using DIVTIC among low achieving students. The students from this level in the experimental group significantly outscored their counterparts in the control group in the final test suggesting that DIVTIC was an important element in their learning process. Interestingly, these low achieving students used DIVTIC most and achieved highest grades. However, lower achieving students appeared to learn from simply viewing the animations rather than being highly interactive and stopping and starting them consistently. The study found that the visualisation process implemented in DIVTIC could be of considerable assistance to a particular group of students, those with a low GPA, in developing their understanding of difficult programming concepts
    • …
    corecore