170 research outputs found

    Investigation of physical processes in digital x-ray tomosynthesis imaging of the breast

    Get PDF
    Early detection is one of the most important factors in the survival of patients diagnosed with breast cancer. For this reason the development of improved screening mammography methods is one of primary importance. One problem that is present in standard planar mammography, which is not solved with the introduction of digital mammography, is the possible masking of lesions by normal breast tissue because of the inherent collapse of three-dimensional anatomy into a two-dimensional image. Digital tomosynthesis imaging has the potential to avoid this effect by incorporating into the acquired image information on the vertical position of the features present in the breast. Previous studies have shown that at an approximately equivalent dose, the contrast-detail trends of several tomosynthesis methods are better than those of planar mammography. By optimizing the image acquisition parameters and the tomosynthesis reconstruction algorithm, it is believed that a tomosynthesis imaging system can be developed that provides more information on the presence of lesions while maintaining or reducing the dose to the patient. Before this imaging methodology can be translated to routine clinical use, a series of issues and concerns related to tomosynthesis imaging must be addressed. This work investigates the relevant physical processes to improve our understanding and enable the introduction of this tomographic imaging method to the realm of clinical breast imaging. The processes investigated in this work included the dosimetry involved in tomosynthesis imaging, x-ray scatter in the projection images, imaging system performance, and acquisition geometry. A comprehensive understanding of the glandular dose to the breast during tomosynthesis imaging, as well as the dose distribution to most of the radiosensitive tissues in the body from planar mammography, tomosynthesis and dedicated breast computed tomography was gained. The analysis of the behavior of x-ray scatter in tomosynthesis yielded an in-depth characterization of the variation of this effect in the projection images. Finally, the theoretical modeling of a tomosynthesis imaging system, combined with the other results of this work was used to find the geometrical parameters that maximize the quality of the tomosynthesis reconstruction.Ph.D.Andrew Karellas, John N. Oshinski, Xiaoping P. Hu, Carl J. D’Orsi and Ernest V. Garci

    Endorectal Digital Prostate Tomosynthesis

    Get PDF
    Several areas of prostate cancer (PCa) management, such as imaging permanent brachytherapy implants or small, aggressive lesions, benefit from high image resolution. Current PCa imaging methods can have inadequate resolution for imaging these areas. Endorectal digital prostate tomosynthesis (endoDPT), an imaging method that combines an external x-ray source and an endorectal x-ray sensor, can produce three-dimensional images of the prostate region that have high image resolution compared to typical methods. This high resolution may improve PCa management and increase positive outcomes in affected men. This dissertation presents the initial development of endoDPT, including system design, image quality assessment, and examples of possible applications to prostate imaging. Experiments using computational phantoms, physical phantoms, and canine prostate specimens were conducted. Initial system design was performed computationally and three methods of endoDPT image reconstruction were developed: shift and add (SAA), backprojection (BP), and filtered BP (FBP). A physical system was developed using an XDR intraoral x-ray sensor and a GE radiography unit. The resolution and radiation dose of endoDPT were measured and compared to a GE CT scanner. Canine prostate specimens that approximated clinical cases of PCa management were imaged and compared using endoDPT, the above CT scanner, and a GE MRI scanner. This study found that the resolution of endoDPT was significantly higher than CT. The radiation dose of endoDPT was significantly lower than CT in the regions of the phantom that were not in the endoDPT field of view (FoV). Inside the endoDPT FoV, the radiation dose ranged from significantly less than to significantly greater than CT. The endoDPT images of the canine prostate specimens demonstrated qualitative improvements in resolution compared to CT and MRI, but endoDPT had difficulty in visualizing larger structures, such as the prostate border. Overall, this study has demonstrated endoDPT has high image resolution compared to typical methods of PCa imaging. Future work will be focused on development of a prototype system that improves scanning efficiency that can be used to optimize endoDPT and perform pre-clinical studies

    Development of a Stationary Digital Breast Tomosynthesis System for Clinical Applications

    Get PDF
    Digital breast tomosynthesis (DBT) has been shown to be a very beneficial tool in the fight against breast cancer. However, current DBT systems have poor spatial resolution compared to full field digital mammography (FFDM), the current gold standard for screening mammography. The poor spatial resolution of DBT systems is a result of the single X-ray source design. In DBT systems a single X-ray source is rotated over an angular span in order to acquire the images needed for 3D reconstruction. The rotation of the X-ray source degrades the spatial resolution of the images. DBT systems which are approved for use in the United States for screening mammography are required to also take a full field digital mammogram with every DBT acquisition in order to compensate for the poor spatial resolution. This double exposure essentially doubles the radiation dose to patients. Over the past few years our research group has developed a carbon nanotube (CNT) based X-ray source technology. The unique nature of CNT X-ray sources allows for multiple X-ray focal spots in a single X-ray source. Using this technology we have recently developed a stationary DBT system (s-DBT) system which is capable of producing a full tomosynthesis image dataset with zero motion of the X-ray source. This system has been shown to have increased spatial resolution over other DBT systems in a laboratory setting. The goal of this thesis work was to optimize the s-DBT system, demonstrate its usefulness over other systems, and finally implement it into the clinic for a clinical trial. The s-DBT system was optimized using different image quality measurements. The optimized system was then used in a breast specimen imaging trial which compared s-DBT to magnified 2D mammography and a conventional single source DBT system. Readers preferred s-DBT to magnified 2D mammography for specimen margin delineation and mass detection, these results were not significant. Using physical measures for spatial resolution the s-DBT system was shown to have improved image quality over conventional single source DBT systems in breast tissue. A separate study showed that s-DBT could be a feasible alternative to FFDM for screening patients with breast implants. Finally, a second s-DBT system was constructed and implemented into the Department of Mammography at UNC hospitals. The first patient was imaged on the system in December of 2013.Doctor of Philosoph

    Measurement of Tumor Extent and Effects of Breast Compression in Digital Mammography and Breast Tomosynthesis

    Get PDF
    Breast cancer is the most common form of cancer affecting women in the western countries. Today x-ray digital mammography (DM) of the breast is commonly used for early detection of breast cancer. However, the sensitivity of mammography is limited, mainly due to the fact that a 3D volume is projected down to a 2D image. This problem can be partially solved by a tomographic technique. Breast tomosynthesis (BT) reduces the detrimental effect of the projected anatomy. Tumor size is an important predictor of prognosis and treatment effect. We hypothesized that the tumor outline would be better defined in BT and therefore tumor measurement in BT would be more accurate compared with DM. The results showed that breast tumor size measured on BT correlated better with the size measured by the pathologists on the surgical specimens compared with measurement on DM. Breast compression is important in mammography both to improve image quality and to reduce the radiation dose to the breast, but it also has a negative consequence as some women refrain from mammography due to the pain associated with the examination. Since BT is a 3D technique, it was hypothesized that less breast compression force can be applied. The results indicated that less compression force is possible without significantly compromising the diagnostic quality of the image and that the patient comfort was improved. An applied breast compression force as used in mammography results in a pressure distribution over the breast. The pressure distribution was assessed using thin pressure sensors attached to the compression plate. The results showed that the pressure distribution was heterogeneous in appearance and varied widely between different breasts. In almost half of the subjects most of the pressure was over the juxtathoracic part of the breast and the pectoral muscle with little or no pressure over the rest of the breast. Another concern regarding breast compression is the question whether the resulting pressure might damage tumors, causing a shedding of malignant cells into the blood system. Peripheral venous blood samples were drawn before and after breast compression and analyzed for circulating tumor cells. The study found no elevated number of circulating cancer cells in peripheral blood after breast compression. Future analysis of samples from veins draining the breast are needed to study if circulating tumor cells are being trapped in the lung capillaries

    Modeling the Anisotropic Resolution and Noise Properties of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) is a 3D imaging modality in which a reconstruction of the breast is generated from various x-ray projections. Due to the newness of this technology, the development of an analytical model of image quality has been on-going. In this thesis, a more complete model is developed by addressing the limitations found in the previous linear systems (LS) model [Zhao, Med. Phys. 2008, 35(12): 5219-32]. A central assumption of the LS model is that the angle of x-ray incidence is approximately normal to the detector in each projection. To model the effect of oblique x-ray incidence, this thesis generalizes Swank\u27s calculations of the transfer functions of x-ray fluorescent screens to arbitrary incident angles. In the LS model, it is also assumed that the pixelation in the reconstruction grid is the same as the detector; hence, the highest frequency that can be resolved is the detector alias frequency. This thesis considers reconstruction grids with smaller pixelation to investigate super-resolution, or visibility of higher frequencies. A sine plate is introduced as a conceptual test object to analyze super-resolution. By orienting the long axis of the sine plate at various angles, the feasibility of oblique reconstruction planes is also investigated. This formulation differs from the LS model in which reconstruction planes are parallel to the breast support. It is shown that the transfer functions for arbitrary angles of x-ray incidence can be modeled in closed form. The high frequency modulation transfer function (MTF) and detective quantum efficiency (DQE) are degraded due to oblique x-ray incidence. In addition, using the sine plate, it is demonstrated that a reconstruction can resolve frequencies exceeding the detector alias frequency. Experimental images of bar patterns verified the existence of super-resolution. Anecdotal clinical examples showed that super-resolution improves the visibility of microcalcifications. The feasibility of oblique reconstructions was established theoretically with the sine plate and was validated experimentally with bar patterns. This thesis develops a more complete model of image quality in DBT by addressing the limitations of the LS model. In future studies, this model can be used as a tool for optimizing DBT

    Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system

    Get PDF
    Purpose: Technological advancements in dental radiography have improved oral care on many fronts, yet diagnostic efficacy for some of the most common oral conditions, such as caries, dental cracks and fractures, and periodontal disease, remains relatively low. Driven by the clinical need for a better diagnostic yield for these and other dental conditions, we initiated the development of a stationary intraoral tomosynthesis (s-IOT) imaging system using carbon nanotube (CNT) x-ray source array technology. Here, we report the system characterization and preliminary imaging evaluation of a clinical prototype s-IOT system approved for human use. Methods: The clinical prototype s-IOT system is comprised of a multibeam CNT x-ray source array, high voltage generator, control electronics, collimator cone, and dynamic digital intraoral detector. During a tomosynthesis scan, each x-ray source is operated sequentially at fixed, nominal tube current of 7 mA and user-specified pulse width. Images are acquired by a digital intraoral detector and the reconstruction algorithm generates slice information in real time for operator review. In this study, the s-IOT system was characterized for tube output, dosimetry, and spatial resolution. Manufacturer specifications were validated, such as tube current, kVp, and pulse width. Tube current was measured with an oscilloscope on the analog output of the anode power supply. Pulse width, kVp, and peak skin dose were measured with a dosimeter with ion chamber and high voltage accessory. In-plane spatial resolution was evaluated via measurement of MTF and imaging of a line pair phantom. Spatial resolution in the depth direction was evaluated via artifact spread measurement. The size of the collimated radiation field was evaluated for compliance with FDA regulations. A dental phantom and human specimens of varying pathologies were imaged on a clinical 2D intraoral imaging system as well as s-IOT for comparison and to explore potential clinical applications. Results: The measured tube current, kVp, and pulse width values were within 3% of the set values. A cumulative peak skin dose of 1.12 mGy was measured for one complete tomosynthesis scan using a 50-ms pulse per projection view. Projection images and reconstruction slices revealed MTF values ranging from 8.1 to 9.3 cycles/mm. Line pair imaging verified this result. The radiation field was found to meet the FDA requirements for intraoral imaging devices. Tomosynthesis reconstruction slice images of the dental phantom and human specimens provided depth resolution, allowing visibility of anatomical features that cannot be seen in the 2D intraoral images. Conclusions: The clinical prototype s-IOT device was evaluated and found to meet all manufacturer specifications. Though the system capability is higher, initial investigations are targeting a low-dose range comparable to a single 2D radiograph. Preliminary studies indicated that s-IOT provides increased image quality and feature conspicuity at a dose comparable to a single 2D intraoral radiograph

    Development of a Stationary Chest Tomosynthesis System Using Carbon Nanotube X-ray Source Array

    Get PDF
    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the ef- fects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane res- olution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by retrofitting the source array to a Carestream digital radiography system. The system passed the electrical and radiation safety tests, and was installed in Marsico Hall. The patient trial started in March of 2015, and the first patient was successfully imaged.Doctor of Philosoph
    • …
    corecore