438 research outputs found

    SIMPLEstone: Benchmarking Presence Server Performance

    Get PDF
    Presence is an important enabler for communication in Internet telephony systems. Presence-based services depend on accurate and timely delivery of presence information. Hence, presence systems need to be appropriately dimensioned to meet the growing number of users, varying number of devices as presence sources, the rate at which they update presence information to the network and the rate at which network distributes the user's presence information to the watchers. SIMPLEstone is a set of metrics for benchmarking the performance of presence systems based on SIMPLE. SIMPLEstone benchmarks a presence server by generating requests based on a work load specification. It measures server capacity in terms of request handling capacity as an aggregate of all types of requests as well as individual request types. The benchmark treats different configuration modes in which presence server interoperates with the Session Initiation protocol (SIP) server as one block

    Context transfer support for mobility management in all-IP networks.

    Get PDF
    This thesis is a description of the research undertaken in the course of the PhD and evolves around a context transfer protocol which aims to complement and support mobility management in next generation mobile networks. Based on the literature review, it was identified that there is more to mobility management than handover management and the successful change of routing paths. Supportive mechanisms like fast handover, candidate access router discovery and context transfer can significantly contribute towards achieving seamless handover which is especially important in the case of real time services. The work focused on context transfer motivated by the fact that it could offer great benefits to session re-establishment during the handover operation of a mobile user and preliminary testbed observations illustrated the need for achieving this. Context transfer aims to minimize the impact of certain transport, routing, security-related services on the handover performance. When a mobile node (MN) moves to a new subnet it needs to continue such services that have already been established at the previous subnet. Examples of such services include AAA profile, IPsec state, header compression, QoS policy etc. Re-establishing these services at the new subnet will require a considerable amount of time for the protocol exchanges and as a result time- sensitive real-time traffic will suffer during this time. By transferring state to the new domain candidate services will be quickly re-established. This would also contribute to the seamless operation of application streams and could reduce susceptibility to errors. Furthermore, re-initiation to and from the mobile node will be avoided hence wireless bandwidth efficiency will be conserved. In this research an extension to mobility protocols was proposed for supporting state forwarding capabilities. The idea of forwarding states was also explored for remotely reconfiguring middleboxes to avoid any interruption of a mobile users' sessions or services. Finally a context transfer module was proposed to facilitate the integration of such a mechanism in next generation architectures. The proposals were evaluated analytically, via simulations or via testbed implementation depending on the scenario investigated. The results demonstrated that the proposed solutions can minimize the impact of security services like authentication, authorization and firewalls on a mobile user's multimedia sessions and thus improving the overall handover performance

    Security for the signaling plane of the SIP protocol

    Get PDF
    VOIP protocols are gaining greater acceptance amongst both users and service providers. This thesis will aim to examine aspects related to the security of signaling plane of the SIP protocol, one of the most widely used VOIP protocols. Firstly, I will analyze the critical issues related to SIP, then move on to discuss both current and possible future solutions, and finally an assessment of the impact on the performance of HTTP digest authentication, IPsec and TLS, the three main methods use

    The Rise of Certificate Transparency and Its Implications on the Internet Ecosystem

    Full text link
    In this paper, we analyze the evolution of Certificate Transparency (CT) over time and explore the implications of exposing certificate DNS names from the perspective of security and privacy. We find that certificates in CT logs have seen exponential growth. Website support for CT has also constantly increased, with now 33% of established connections supporting CT. With the increasing deployment of CT, there are also concerns of information leakage due to all certificates being visible in CT logs. To understand this threat, we introduce a CT honeypot and show that data from CT logs is being used to identify targets for scanning campaigns only minutes after certificate issuance. We present and evaluate a methodology to learn and validate new subdomains from the vast number of domains extracted from CT logged certificates.Comment: To be published at ACM IMC 201
    corecore