242 research outputs found

    The Impact of IXPs on the AS-level Topology Structure of the Internet

    Get PDF
    The AS-level topology of the Internet has been quite a hot research topic in the last few years. However, only a small number of studies have been developed that give a structural interpretation of this graph. Such an interpretation is crucially important in order to test protocols and optimal routing algorithms, to design efficient networks, and for failure detection purposes. Moreover, most research does not highlight the role that IXPs have on the AS-level structure of the Internet, although their role is recognized as fundamental. The initial contribution of this study is an analysis of the most important AS-level topologies that are publicly found on the web and an analysis of the topology obtained when they are merged. We compiled structural information from this topology making considerable use of the k-core decomposition technique to delineate various particular classes of nodes. Next, we associated node properties with a reasonable modus operandi of the ASs on the Internet. The second contribution is a study of the impact that ASs connected to IXPs and BGP connections crossing IXPs have on the AS-level topology. To achieve this, we developed a procedure to gather reliable information related to IXPs and their participants

    Antitrust Analysis for the Internet Upstream Market: a BGP Approach

    Get PDF
    In this paper we study concentration in the European Internet upstream access market. Measurement of market concentration depends on correctly defining the market, but this is not always possible as Antitrust authorities often lack reliable pricing and traffic data. We present an alternative approach based on the inference of the Internet Operators interconnection policies using micro-data sourced from their Border Gateway Protocol tables. Firstly we propose a price-independent algorithm for defining both the vertical and geographical relevant market boundaries, then we calculate market concentration indexes using two novel metrics. These assess, for each undertaking, both its role in terms of essential network facility and of wholesale market dominance. The results, applied to four leading Internet Exchange Points in London, Amsterdam, Frankfurt and Milan, show that some vertical segments of these markets are extremely competitive, while others are highly concentrated, putting them within the special attention category of the Merger Guidelines

    Antitrust Analysis for the Internet Upstream Market: A BGP Approach

    Get PDF
    In this paper we study concentration in the European Internet upstream access market. The possibility of measuring market concentration depends on a correct definition of the market itself; however, this is not always possible, since, as it is the case of the Internet industry, very often Antitrust authorities lack reliable pricing and traffic data. This difficulty motivates our paper. We present an alternative approach based on the inference of the Internet Operators interconnection policies using micro-data sourced from their Border Gateway Protocol tables. We assess market concentration following a two step process: firstly we propose a price-independent algorithm for defining both the vertical and geographical relevant market boundaries, then we calculate market concentration indexes using two novel metrics. These assess, for each undertaking, both itsrole in terms of essential network facility and of wholesale market dominance. The results, applied to four leading Internet Exchange Points in London, Amsterdam, Frankfurt and Milan, show that some vertical segments of these markets are highly concentrated, while others are extremely competitive. According to the Merger Guidelines some of the estimated market concentration values would immediately fall within the special attention category.Technology and Industry, Other Topics

    Using Tuangou to reduce IP transit costs

    Get PDF
    A majority of ISPs (Internet Service Providers) support connectivity to the entire Internet by transiting their traffic via other providers. Although the transit prices per Mbps decline steadily, the overall transit costs of these ISPs remain high or even increase, due to the traffic growth. The discontent of the ISPs with the high transit costs has yielded notable innovations such as peering, content distribution networks, multicast, and peer-to-peer localization. While the above solutions tackle the problem by reducing the transit traffic, this paper explores a novel approach that reduces the transit costs without altering the traffic. In the proposed CIPT (Cooperative IP Transit), multiple ISPs cooperate to jointly purchase IP (Internet Protocol) transit in bulk. The aggregate transit costs decrease due to the economies-of-scale effect of typical subadditive pricing as well as burstable billing: not all ISPs transit their peak traffic during the same period. To distribute the aggregate savings among the CIPT partners, we propose Shapley-value sharing of the CIPT transit costs. Using public data about IP traffic of 264 ISPs and transit prices, we quantitatively evaluate CIPT and show that significant savings can be achieved, both in relative and absolute terms. We also discuss the organizational embodiment, relationship with transit providers, traffic confidentiality, and other aspects of CIPT

    Shaping the Internet: 10 Years of IXP Growth

    Get PDF
    Over the past decade, IXPs have been playing a key role in enabling interdomain connectivity. Their traffic volumes have grown dramatically and their physical presence has spread throughout the world. While the relevance of IXPs is undeniable, their long-term contribution to the shaping of the current Internet is not fully understood yet. In this paper, we look into the impact on Internet routes of the intense IXP growth over the last decade. We observe that while in general IXPs only have a small effect in path shortening, very large networks do enjoy a clear IXP-enabled path reduction. We also observe a diversion of the routes, away from the central Tier-1 ASes supported by IXPs. Interestingly, we also find that whereas IXP membership has grown, large and central ASes have steadily moved away from public IXP peerings, whereas smaller ones have embraced them. Despite all this changes, we find though that a clear hierarchy remains, with a small group of highly central network

    k-dense Communities in the Internet AS-Level Topology

    Get PDF
    Extracting a set of well connected subgraphs as com- munities from the Internet AS-level topology graph is crucially important for assessing the performance of protocols and routing algorithms, for designing ecient networks, and for evaluating the impact of failures. A huge number of community extraction methods have been proposed in the literature, among which the k-core decomposition and the k-clique community extraction methods. The former method is computationally e- cient, but it only discovers coarse-grained and loosely connected communities. On the other hand, k-clique can extract ne-grained and tightly connected communities, but is NP hard and therefore useless for analyzing the Internet AS-level topology graph. In the paper we inves- tigate the Internet structure by exploiting an ecient algorithm for extracting k-dense communities, where a k-clique community implies a k-dense community, which in turn implies a k-core community. The paper provides two innovative contributions. The rst is the application of the k-dense method to the Internet AS-level topology graph - obtained from the CAIDA, DIMES and IRL datasets - to identify well- connected communities and to analyze how these are connected to the rest of the graph. The second contribution relates to the study of the most well-connected communities with the support of two additional datasets: a geographical dataset (which lists, for each AS, the countries in which it has at least one geographical location) and the IXP dataset (which maintains, for each IXP, its geographical position and the list of its participants). We found that the k-max- dense community holds a central position in the Internet AS-level topology graph structure since its 101 ASs (less than the 0.3% of Internet ASs) are involved in more than 39% of all Internet connections. We also found that those ASs are connected to at least one IXP and have at least one geographical location in Europe (only 70.3% of them have at least one additional geographical location outside Europe)
    • 

    corecore