2,258 research outputs found

    Downlink Training in Cell-Free Massive MIMO: A Blessing in Disguise

    Full text link
    Cell-free Massive MIMO (multiple-input multiple-output) refers to a distributed Massive MIMO system where all the access points (APs) cooperate to coherently serve all the user equipments (UEs), suppress inter-cell interference and mitigate the multiuser interference. Recent works demonstrated that, unlike co-located Massive MIMO, the \textit{channel hardening} is, in general, less pronounced in cell-free Massive MIMO, thus there is much to benefit from estimating the downlink channel. In this study, we investigate the gain introduced by the downlink beamforming training, extending the previously proposed analysis to non-orthogonal uplink and downlink pilots. Assuming single-antenna APs, conjugate beamforming and independent Rayleigh fading channel, we derive a closed-form expression for the per-user achievable downlink rate that addresses channel estimation errors and pilot contamination both at the AP and UE side. The performance evaluation includes max-min fairness power control, greedy pilot assignment methods, and a comparison between achievable rates obtained from different capacity-bounding techniques. Numerical results show that downlink beamforming training, although increases pilot overhead and introduces additional pilot contamination, improves significantly the achievable downlink rate. Even for large number of APs, it is not fully efficient for the UE relying on the statistical channel state information for data decoding.Comment: Published in IEEE Transactions on Wireless Communications on August 14, 2019. {\copyright} 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Massive MIMO Systems with Non-Ideal Hardware: Energy Efficiency, Estimation, and Capacity Limits

    Full text link
    The use of large-scale antenna arrays can bring substantial improvements in energy and/or spectral efficiency to wireless systems due to the greatly improved spatial resolution and array gain. Recent works in the field of massive multiple-input multiple-output (MIMO) show that the user channels decorrelate when the number of antennas at the base stations (BSs) increases, thus strong signal gains are achievable with little inter-user interference. Since these results rely on asymptotics, it is important to investigate whether the conventional system models are reasonable in this asymptotic regime. This paper considers a new system model that incorporates general transceiver hardware impairments at both the BSs (equipped with large antenna arrays) and the single-antenna user equipments (UEs). As opposed to the conventional case of ideal hardware, we show that hardware impairments create finite ceilings on the channel estimation accuracy and on the downlink/uplink capacity of each UE. Surprisingly, the capacity is mainly limited by the hardware at the UE, while the impact of impairments in the large-scale arrays vanishes asymptotically and inter-user interference (in particular, pilot contamination) becomes negligible. Furthermore, we prove that the huge degrees of freedom offered by massive MIMO can be used to reduce the transmit power and/or to tolerate larger hardware impairments, which allows for the use of inexpensive and energy-efficient antenna elements.Comment: To appear in IEEE Transactions on Information Theory, 28 pages, 15 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/massive-MIMO-hardware-impairment

    A Semiblind Two-Way Training Method for Discriminatory Channel Estimation in MIMO Systems

    Get PDF
    Discriminatory channel estimation (DCE) is a recently developed strategy to enlarge the performance difference between a legitimate receiver (LR) and an unauthorized receiver (UR) in a multiple-input multiple-output (MIMO) wireless system. Specifically, it makes use of properly designed training signals to degrade channel estimation at the UR which in turn limits the UR's eavesdropping capability during data transmission. In this paper, we propose a new two-way training scheme for DCE through exploiting a whitening-rotation (WR) based semiblind method. To characterize the performance of DCE, a closed-form expression of the normalized mean squared error (NMSE) of the channel estimation is derived for both the LR and the UR. Furthermore, the developed analytical results on NMSE are utilized to perform optimal power allocation between the training signal and artificial noise (AN). The advantages of our proposed DCE scheme are two folds: 1) compared to the existing DCE scheme based on the linear minimum mean square error (LMMSE) channel estimator, the proposed scheme adopts a semiblind approach and achieves better DCE performance; 2) the proposed scheme is robust against active eavesdropping with the pilot contamination attack, whereas the existing scheme fails under such an attack.Comment: accepted for publication in IEEE Transactions on Communication

    Coordinated Multi-cell Beamforming for Massive MIMO: A Random Matrix Approach

    Get PDF
    We consider the problem of coordinated multi- cell downlink beamforming in massive multiple input multiple output (MIMO) systems consisting of N cells, Nt antennas per base station (BS) and K user terminals (UTs) per cell. Specifically, we formulate a multi-cell beamforming algorithm for massive MIMO systems which requires limited amount of information exchange between the BSs. The design objective is to minimize the aggregate transmit power across all the BSs subject to satisfying the user signal to interference noise ratio (SINR) constraints. The algorithm requires the BSs to exchange parameters which can be computed solely based on the channel statistics rather than the instantaneous CSI. We make use of tools from random matrix theory to formulate the decentralized algorithm. We also characterize a lower bound on the set of target SINR values for which the decentralized multi-cell beamforming algorithm is feasible. We further show that the performance of our algorithm asymptotically matches the performance of the centralized algorithm with full CSI sharing. While the original result focuses on minimizing the aggregate transmit power across all the BSs, we formulate a heuristic extension of this algorithm to incorporate a practical constraint in multi-cell systems, namely the individual BS transmit power constraints. Finally, we investigate the impact of imperfect CSI and pilot contamination effect on the performance of the decentralized algorithm, and propose a heuristic extension of the algorithm to accommodate these issues. Simulation results illustrate that our algorithm closely satisfies the target SINR constraints and achieves minimum power in the regime of massive MIMO systems. In addition, it also provides substantial power savings as compared to zero-forcing beamforming when the number of antennas per BS is of the same orders of magnitude as the number of UTs per cell
    corecore