11 research outputs found

    The impact of transistor aging on the reliability of level shifters in nano-scale CMOS technology

    Get PDF
    On-chip level shifters are the interface between parts of an Integrated Circuit (IC) that operate in different voltage levels. For this reason, they are indispensable blocks in Multi-Vdd System-on-Chips (SoCs). In this paper, we present a comprehensive analysis of the effects of Bias Temperature Instability (BTI) aging on the delay and the power consumption of level shifters. We evaluate the standard High-to-Low/Low-to-High level shifters, as well as several recently proposed level-shifter designs, implemented using a 32 nm CMOS technology. Through SPICE simulations, we demonstrate that the delay degradation due to BTI aging varies for each level shifter design: it is 83.3% on average and it exceeds 200% after 5 years of operation for the standard Low-to-High and the NDLSs level shifters, which is 10 × higher than the BTI-induced delay degradation of standard CMOS logic cells. Similarly, we show that the examined designs can suffer from an average 38.2% additional power consumption after 5 years of operation that, however, reaches 180% for the standard level-shifter and exceeds 163% for the NDLSs design. The high susceptibility of these designs to BTI is attributed to their differential signaling structure, combined with the very low supply voltage. Moreover, we show that recently proposed level-up shifter design employing a voltage step-down technique are

    Design and Optimization for Resilient Energy Efficient Computing

    Get PDF
    Heutzutage sind moderne elektronische Systeme ein integraler Bestandteil unseres Alltags. Dies wurde unter anderem durch das exponentielle Wachstum der Integrationsdichte von integrierten Schaltkreisen ermöglicht zusammen mit einer Verbesserung der Energieeffizienz, welche in den letzten 50 Jahren stattfand, auch bekannt als Moore‘s Gesetz. In diesem Zusammenhang ist die Nachfrage von energieeffizienten digitalen Schaltkreisen enorm angestiegen, besonders in Anwendungsfeldern wie dem Internet of Things (IoT). Da der Leistungsverbrauch von Schaltkreisen stark mit der Versorgungsspannung verknüpft ist, wurden effiziente Verfahren entwickelt, welche die Versorgungsspannung in den nahen Schwellenspannung-Bereich skalieren, zusammengefasst unter dem Begriff Near-Threshold-Computing (NTC). Mithilfe dieser Verfahren kann eine Erhöhung der Energieeffizienz von Schaltungen um eine ganze Größenordnung ermöglicht werden. Neben der verbesserten Energiebilanz ergeben sich jedoch zahlreiche Herausforderungen was den Schaltungsentwurf angeht. Zum Beispiel führt das Reduzieren der Versorgungsspannung in den nahen Schwellenspannungsbereich zu einer verzehnfachten Erhöhung der Sensibilität der Schaltkreise gegenüber Prozessvariation, Spannungsfluktuationen und Temperaturveränderungen. Die Einflüsse dieser Variationen reduzieren die Zuverlässigkeit von NTC Schaltkreisen und sind ihr größtes Hindernis bezüglich einer umfassenden Nutzung. Traditionelle Ansätze und Methoden aus dem nominalen Spannungsbereich zur Kompensation von Variabilität können nicht effizient angewandt werden, da die starken Performance-Variationen und Sensitivitäten im nahen Schwellenspannungsbereich dessen Kapazitäten übersteigen. Aus diesem Grund sind neue Entwurfsparadigmen und Entwurfsautomatisierungskonzepte für die Anwendung von NTC erforderlich. Das Ziel dieser Arbeit ist die zuvor erwähnten Probleme durch die Bereitstellung von ganzheitlichen Methoden zum Design von NTC Schaltkreisen sowie dessen Entwurfsautomatisierung anzugehen, welche insbesondere auf der Schaltungs- sowie Logik-Ebene angewandt werden. Dabei werden tiefgehende Analysen der Zuverlässigkeit von NTC Systemen miteinbezogen und Optimierungsmethoden werden vorgeschlagen welche die Zuverlässigkeit, Performance und Energieeffizienz verbessern. Die Beiträge dieser Arbeit sind wie folgt: Schaltungssynthese und Timing Closure unter Einbezug von Variationen: Das Einhalten von Anforderungen an das zeitliche Verhalten und Zuverlässigkeit von NTC ist eine anspruchsvolle Aufgabe. Die Auswirkungen von Variabilität kommen bei starken Performance-Schwankungen, welche zu teuren zeitlichen Sicherheitsmargen führen, oder sich in Hold-Time Verstößen ausdrücken, verursacht durch funktionale Störungen, zum Vorschein. Die konventionellen Ansätze beschränken sich dabei alleine auf die Erhöhung von zeitlichen Sicherheitsmargen. Dies ist jedoch sehr ineffizient für NTC, wegen dem starken Ausmaß an Variationen und den erhöhten Leckströmen. In dieser Arbeit wird ein Konzept zur Synthese und Timing Closure von Schaltkreisen unter Variationen vorgestellt, welches sowohl die Sensitivität gegenüber Variationen reduziert als auch die Energieeffizienz, Performance und Zuverlässigkeit verbessert und zugleich den Mehraufwand von Timing Closures [1, 2] verringert. Simulationsergebnisse belegen, dass unser vorgeschlagener Ansatz die Verzögerungszeit um 87% reduziert und die Performance und Energieeffizienz um 25% beziehungsweise 7.4% verbessert, zu Kosten eines erhöhten Flächenbedarfs von 4.8%. Schichtübergreifende Zuverlässigkeits-, Energieeffizienz- und Performance-Optimierung von Datenpfaden: Schichtübergreifende Analyse von Prozessor-Datenpfaden, welche den ganzen Weg spannen vom Kompilierer zum Schaltungsentwurf, kann potenzielle Optimierungsansätze aufzeigen. Ein Datenpfad ist eine Kombination von mehreren funktionalen Einheiten, welche diverse Instruktionen verarbeiten können. Unsere Analyse zeigt, dass die Ausführungszeiten von Instruktionen bei niedrigen Versorgungsspannungen stark variieren, weshalb eine Klassifikation in schnelle und langsame Instruktionen vorgenommen werden kann. Des Weiteren können funktionale Instruktionen als häufig und selten genutzte Instruktionen kategorisiert werden. Diese Arbeit stellt eine Multi-Zyklen-Instruktionen-Methode vor, welche die Energieeffizienz und Belastbarkeit von funktionalen Einheiten erhöhen kann [3]. Zusätzlich stellen wir einen Partitionsalgorithmus vor, welcher ein fein-granulares Power-gating von selten genutzten Einheiten ermöglicht [4] durch Partition von einzelnen funktionalen Einheiten in mehrere kleinere Einheiten. Die vorgeschlagenen Methoden verbessern das zeitliche Schaltungsverhalten signifikant, und begrenzen zugleich die Leckströme beträchtlich, durch Einsatz einer Kombination von Schaltungs-Redesign- und Code-Replacement-Techniken. Simulationsresultate zeigen, dass die entwickelten Methoden die Performance und Energieeffizienz von arithmetisch-logischen Einheiten (ALU) um 19% beziehungsweise 43% verbessern. Des Weiteren kann der Zuwachs in Performance der optimierten Schaltungen in eine Verbesserung der Zuverlässigkeit umgewandelt werden [5, 6]. Post-Fabrication und Laufzeit-Tuning: Prozess- und Laufzeitvariationen haben einen starken Einfluss auf den Minimum Energy Point (MEP) von NTC-Schaltungen, welcher mit der energieeffizientesten Versorgungsspannung assoziiert ist. Es ist ein besonderes Anliegen, die NTC-Schaltung nach der Herstellung (post-fabrication) so zu kalibrieren, dass sich die Schaltung im MEP-Zustand befindet, um die beste Energieeffizient zu erreichen. In dieser Arbeit, werden Post-Fabrication und Laufzeit-Tuning vorgeschlagen, welche die Schaltung basierend auf Geschwindigkeits- und Leistungsverbrauch-Messungen nach der Herstellung auf den MEP kalibrieren. Die vorgestellten Techniken ermitteln den MEP per Chip-Basis um den Einfluss von Prozessvariationen mit einzubeziehen und dynamisch die Versorgungsspannung und Frequenz zu adaptieren um zeitabhängige Variationen wie Workload und Temperatur zu adressieren. Zu diesem Zweck wird in die Firmware eines Chips ein Regression-Modell integriert, welches den MEP basierend auf Workload- und Temperatur-Messungen zur Laufzeit extrahiert. Das Regressions-Modell ist für jeden Chip einzigartig und basiert lediglich auf Post-Fabrication-Messungen. Simulationsergebnisse zeigen das der entwickelte Ansatz eine sehr hohe prognostische Treffsicherheit und Energieeffizienz hat, ähnlich zu hardware-implementierten Methoden, jedoch ohne hardware-seitigen Mehraufwand [7, 8]. Selektierte Flip-Flop Optimierung: Ultra-Low-Voltage Schaltungen müssen im nominalen Versorgungsspannungs-Mode arbeiten um zeitliche Anforderungen von laufenden Anwendungen zu erfüllen. In diesem Fall ist die Schaltung von starken Alterungsprozessen betroffen, welche die Transistoren durch Erhöhung der Schwellenspannungen degradieren. Unsere tiefgehenden Analysen haben gezeigt das gewisse Flip-Flop-Architekturen von diesen Alterungserscheinungen beeinflusst werden indem fälschlicherweise konstante Werte ( \u270\u27 oder \u271\u27) für eine lange Zeit gespeichert sind. Im Vergleich zu anderen Komponenten sind Flip-Flops sensitiver zu Alterungsprozessen und versagen unter anderem dabei einen neuen Wert innerhalb des vorgegebenen zeitlichen Rahmens zu übernehmen. Außerdem kann auch ein geringfügiger Spannungsabfall zu diesen zeitlichen Verstößen führen, falls die betreffenden gealterten Flip-Flops zum kritischen Pfad zuzuordnen sind. In dieser Arbeit wird eine selektiver Flip-Flop-Optimierungsmethode vorgestellt, welche die Schaltungen bezüglich Robustheit gegen statische Alterung und Spannungsabfall optimieren. Dabei werden zuerst optimierte robuste Flip-Flops generiert und diese dann anschließend in die Standard-Zellen-Bibliotheken integriert. Flip-Flops, die in der Schaltung zum kritischen Pfad gehören und Alterung sowie Spannungsabfall erfahren, werden durch die optimierten robusten Versionen ersetzt, um das Zeitverhalten und die Zuverlässigkeit der Schaltung zu verbessern [9, 10]. Simulationsergebnisse zeigen, dass die erwartete Lebenszeit eines Prozessors um 37% verbessert werden kann, während Leckströme um nur 0.1% erhöht werden. Während NTC das Potenzial hat große Energieeffizienz zu ermöglichen, ist der Einsatz in neue Anwendungsfeldern wie IoT wegen den zuvor erwähnten Problemen bezüglich der hohen Sensitivität gegenüber Variationen und deshalb mangelnder Zuverlässigkeit, noch nicht durchsetzbar. In dieser Dissertation und in noch nicht publizierten Werken [11–17], stellen wir Lösungen zu diesen Problemen vor, die eine Integration von NTC in heutige Systeme ermöglichen

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Monitor amb control strategies to reduce the impact of process variations in digital circuits

    Get PDF
    As CMOS technology scales down, Process, Voltage, Temperature and Ageing (PVTA) variations have an increasing impact on the performance and power consumption of electronic devices. These issues may hold back the continuous improvement of these devices in the near future. There are several ways to face the variability problem: to increase the operating margins of maximum clock frequency, the implementation of lithographic friendly layout styles, and the last one and the focus of this thesis, to adapt the circuit to its actual manufacturing and environment conditions by tuning some of the adjustable parameters once the circuit has been manufactured. The main challenge of this thesis is to develop a low-area variability compensation mechanism to automatically mitigate PVTA variations in run-time, i.e. while integrated circuit is running. This implies the development of a sensor to obtain the most accurate picture of variability, and the implementation of a control block to knob some of the electrical parameters of the circuit.A mesura que la tecnologia CMOS escala, les variacions de Procés, Voltatge, Temperatura i Envelliment (PVTA) tenen un impacte creixent en el rendiment i el consum de potència dels dispositius electrònics. Aquesta problemàtica podria arribar a frenar la millora contínua d'aquests dispositius en un futur proper. Hi ha diverses maneres d'afrontar el problema de la variabilitat: relaxar el marge de la freqüència màxima d'operació, implementar dissenys físics de xips més fàcils de litografiar, i per últim i com a tema principal d'aquesta tesi, adaptar el xip a les condicions de fabricació i d'entorn mitjançant la modificació d'algun dels seus paràmetres ajustables una vegada el circuit ja ha estat fabricat. El principal repte d'aquesta tesi és desenvolupar un mecanisme de compensació de variabilitat per tal de mitigar les variacions PVTA de manera automàtica en temps d'execució, és a dir, mentre el xip està funcionant. Això implica el desenvolupament d'un sensor capaç de mesurar la variabilitat de la manera més acurada possible, i la implementació d'un bloc de control que permeti l'ajust d'alguns dels paràmetres elèctrics dels circuits

    Temperature-Aware Design and Management for 3D Multi-Core Architectures

    Get PDF
    Vertically-integrated 3D multiprocessors systems-on-chip (3D MPSoCs) provide the means to continue integrating more functionality within a unit area while enhancing manufacturing yields and runtime performance. However, 3D MPSoCs incur amplified thermal challenges that undermine the corresponding reliability. To address these issues, several advanced cooling technologies, alongside temperature-aware design-time optimizations and run-time management schemes have been proposed. In this monograph, we provide an overall survey on the recent advances in temperature-aware 3D MPSoC considerations. We explore the recent advanced cooling strategies, thermal modeling frameworks, design-time optimizations and run-time thermal management schemes that are primarily targeted for 3D MPSoCs. Our aim of proposing this survey is to provide a global perspective, highlighting the advancements and drawbacks on the recent state-of-the-ar

    Data-set supporting the article entitled "The impact of BTI aging on the reliability of level shifters in nano-scale CMOS technology"

    No full text
    This data-set supports the article entitled &quot;The impact of BTI aging on the reliability of level shifters in nano-scale CMOS technology&quot;, accepted for the publication in Microelectronics Reliability DOI:10.1016/j.microrel.2016.10.018</span

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Robustness and durability aspects in the design of power management circuits for IoT applications

    Get PDF
    With the increasing interest in the heterogeneous world of the “Internet of Things” (IoT), new compelling challenges arise in the field of electronic design, especially concerning the development of innovative power management solutions. Being this diffusion a consolidated reality nowadays, emerging needs like lifetime, durability and robustness are becoming the new watchwords for power management, being a common ground which can dramatically improve service life and confidence in these devices. The possibility to design nodes which do not need external power supply is a crucial point in this scenario. Moreover, the development of autonomous nodes which are substantially maintenance free, and which therefore can be placed in unreachable or harsh environments is another enabling aspect for the exploitation of this technology. In this respect, the study of energy harvesting techniques is increasingly earning interest again. Along with efficiency aspects, degradation aspects are the other main research field with respect to lifetime, durability and robustness of IoT devices, especially related to aging mechanisms which are peculiar in power management and power conversion circuits, like for example battery wear during usage or hot-carrier degradation (HCD) in power MOSFETs. In this thesis different aspects related to lifetime, durability and robustness in the field of power management circuits are studied, leading to interesting contributions. Innovative designs of DC/DC power converters are studied and developed, especially related to reliability aspects of the use of electrochemical cells as power sources. Moreover, an advanced IoT node is proposed, based on energy harvesting techniques, which features an intelligent dynamically adaptive power management circuit. As a further contribution, a novel algorithm is proposed, which is able to effectively estimate the efficiency of a DC/DC converter for photovoltaic applications at runtime. Finally, an innovative DC/DC power converter with embedded monitoring of hot-carrier degradation in power MOSFETs is designed
    corecore