141 research outputs found

    Iterative Application of the aiNET Algorithm in the Construction of a Radial Basis Function Neural Network

    Get PDF
    This paper presents some of the procedures adopted in the construction of a Radial Basis Function Neural Network by iteratively applying the aiNET, an Artificial Immune Systems Algorithm. These procedures have shown to be effective in terms of i) the free determination of centroids inspired by an immune heuristics; and ii) the achievement of appropriate minimal square errors after a number of iterations. Experimental and empirical results are compared aiming at confirming (or not) some hypotheses

    Využití imunitních systémů v datové analýze

    Get PDF
    This paper presents basic principles of artificial immune systems as a novel approach to data clustering. Work is focused on artificial immune network - aiNet. Finally the comparison of artificial immune network and artificial neural network is presented

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Artificial immune systems applications in cancer research

    Get PDF
    Artificial Immune System (AIS) is a branch of computational intelligence that has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational problems. This work focuses on the application of AIS techniques to cancer research and specifically for prediction of the recurrence of cancer in patients. The objective is to test AIS models and algorithms for cancer research by validation against actual cancer datasets. © 2011 IEEE

    An Evaluation of a Metaheuristic Artificial Immune System for Household Energy Optimization

    Get PDF
    [EN] Devices in a smart home should be connected in an optimal way; this helps save energy and money. Among numerous optimization models that can be found in the literature, we would like to highlight artificial immune systems, which use special bioinspired algorithms to solve optimization problems effectively. The aim of this work is to present the application of an artificial immune system in the context of different energy optimization problems. Likewise, a case study is performed in which an artificial immune system is incorporated in order to solve an energy management problem in a domestic environment. A thorough analysis of the different strategies is carried out to demonstrate the ability of an artificial immune system to find a successful optima which satisfies the problem constraints

    Adapting Artificial Immune Algorithms For University Timetabling

    Get PDF
    Penjadualan kelas dan peperiksaan di universiti adalah masalah pengoptimuman berkekangan tinggi. University class and examination timetabling are highly constrained optimization problems

    Application of artificial immune system to domestic energy management problem

    Get PDF
    [EN] The connection of devices in a smart home should be done optimally, this helps save energy and money. Numerous optimization models have been applied, they are based on fuzzy logic, linear programming or bio-inspired algorithms. The aim of this work is to solve an energy management problem in a domestic environment by applying an artificial immune system. We carried out a thorough analysis of the different strategies that optimize a domestic environment system, in order to demonstrate the ability of an artificial immune system to find a successful optima that satisfies the problem constraints

    Blind Search for Optimal Wiener Equalizers Using an Artificial Immune Network Model

    Get PDF
    This work proposes a framework to determine the optimal Wiener equalizer by using an artificial immune network model together with the constant modulus (CM) cost function. This study was primarily motivated by recent theoretical results concerning the CM criterion and its relation to the Wiener approach. The proposed immune-based technique was tested under different channel models and filter orders, and benchmarked against a procedure using a genetic algorithm with niching. The results demonstrated that the proposed strategy has a clear superiority when compared with the more traditional technique. The proposed algorithm presents interesting features from the perspective of multimodal search, being capable of determining the optimal Wiener equalizer in most runs for all tested channels
    corecore