1,789 research outputs found

    Are coarse-grained overlays ready for general purpose application acceleration on FPGAs?

    Get PDF
    Combining processors with hardware accelerators has become a norm with systems-on-chip (SoCs) ever present in modern compute devices. Heterogeneous programmable system on chip platforms sometimes referred to as hybrid FPGAs, tightly couple general purpose processors with high performance reconfigurable fabrics, providing a more flexible alternative. We can now think of a software application with hardware accelerated portions that are reconfigured at runtime. While such ideas have been explored in the past, modern hybrid FPGAs are the first commercial platforms to enable this move to a more software oriented view, where reconfiguration enables hardware resources to be shared by multiple tasks in a bigger application. However, while the rapidly increasing logic density and more capable hard resources found in modern hybrid FPGA devices should make them widely deployable, they remain constrained within specialist application domains. This is due to both design productivity issues and a lack of suitable hardware abstraction to eliminate the need for working with platform-specific details, as server and desktop virtualization has done in a more general sense. To allow mainstream adoption of FPGA based accelerators in general purpose computing, there is a need to virtualize FPGAs and make them more accessible to application developers who are accustomed to software API abstractions and fast development cycles. In this paper, we discuss the role of overlay architectures in enabling general purpose FPGA application acceleration

    A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Get PDF
    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.The research leading to these results has received funding from the Spanish Government and European FEDER funds (DPI2012-32390), the Valencia Regional Government (PROMETEO/2013/085) and the University of Alicante (GRE12-17)

    A time-multiplexed FPGA overlay with linear interconnect

    Get PDF
    Coarse-grained overlays improve FPGA design pro- ductivity by providing fast compilation and software like pro- grammability. Soft processor based overlays with well-defined ISAs are attractive to application developers due to their ease of use. However, these overlays have significant FPGA resource overheads. Time multiplexed (TM) CGRA-like overlays represent an interesting alternative as they are able to change their behavior on a cycle by cycle basis while the compute kernel executes. This reduces the FPGA resource needed, but at the cost of a higher initiation interval (II) and hence reduced throughput. The fully flexible routing network of current CGRA-like overlays results in high FPGA resource usage. However, many application kernels are acyclic and can be implemented using a much simpler linear feed-forward routing network. This paper examines a DSP block based TM overlay with linear interconnect where the overlay architecture takes account of the application kernels’ characteristics and the underlying FPGA architecture, so as to minimize the II and the FPGA resource usage. We examine a number of architectural extensions to the DSP block based functional unit to improve the II, throughput and latency. The results show an average 70% reduction in II, with corresponding improvements in throughput and latency

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    Microcontroller-based multiple-input multiple-output transmitter systems

    Get PDF
    Multiple-Input Multiple_output (MIMO) Systems use multiple antennas at both the transmitter and receiver to increase data throughput and/or system reliability. An MIMO transmitter can be implemented using a variety of approaches. This work describes some of the approaches that can be used to generate the transmitted waveforms, and discuss the features and limitation of each. In particular, it shows haw a microcontroller-based system can be used for applications which require low power consumption. This thesis also describes the high-level design of a microcontroller-based MIMO transmitter. The computational speed of the microcontroller, as compared to Field-programmable Gate Array (FPGA) and Digital Signal Processors (DSP), coupled with other additional tasks which it may need to handle limit the transmitted data-rate. However, this low power and low cost design may make it attractive for some applications --Abstract, page iii

    FPGA dynamic and partial reconfiguration : a survey of architectures, methods, and applications

    Get PDF
    Dynamic and partial reconfiguration are key differentiating capabilities of field programmable gate arrays (FPGAs). While they have been studied extensively in academic literature, they find limited use in deployed systems. We review FPGA reconfiguration, looking at architectures built for the purpose, and the properties of modern commercial architectures. We then investigate design flows, and identify the key challenges in making reconfigurable FPGA systems easier to design. Finally, we look at applications where reconfiguration has found use, as well as proposing new areas where this capability places FPGAs in a unique position for adoption

    Automatic Nested Loop Acceleration on FPGAs Using Soft CGRA Overlay

    Get PDF
    Session 1: HLS Toolingpostprin

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow
    • …
    corecore