90 research outputs found

    Persistent Evidence of Local Image Properties in Generic ConvNets

    Full text link
    Supervised training of a convolutional network for object classification should make explicit any information related to the class of objects and disregard any auxiliary information associated with the capture of the image or the variation within the object class. Does this happen in practice? Although this seems to pertain to the very final layers in the network, if we look at earlier layers we find that this is not the case. Surprisingly, strong spatial information is implicit. This paper addresses this, in particular, exploiting the image representation at the first fully connected layer, i.e. the global image descriptor which has been recently shown to be most effective in a range of visual recognition tasks. We empirically demonstrate evidences for the finding in the contexts of four different tasks: 2d landmark detection, 2d object keypoints prediction, estimation of the RGB values of input image, and recovery of semantic label of each pixel. We base our investigation on a simple framework with ridge rigression commonly across these tasks, and show results which all support our insight. Such spatial information can be used for computing correspondence of landmarks to a good accuracy, but should potentially be useful for improving the training of the convolutional nets for classification purposes

    Recombinator Networks: Learning Coarse-to-Fine Feature Aggregation

    Full text link
    Deep neural networks with alternating convolutional, max-pooling and decimation layers are widely used in state of the art architectures for computer vision. Max-pooling purposefully discards precise spatial information in order to create features that are more robust, and typically organized as lower resolution spatial feature maps. On some tasks, such as whole-image classification, max-pooling derived features are well suited; however, for tasks requiring precise localization, such as pixel level prediction and segmentation, max-pooling destroys exactly the information required to perform well. Precise localization may be preserved by shallow convnets without pooling but at the expense of robustness. Can we have our max-pooled multi-layered cake and eat it too? Several papers have proposed summation and concatenation based methods for combining upsampled coarse, abstract features with finer features to produce robust pixel level predictions. Here we introduce another model --- dubbed Recombinator Networks --- where coarse features inform finer features early in their formation such that finer features can make use of several layers of computation in deciding how to use coarse features. The model is trained once, end-to-end and performs better than summation-based architectures, reducing the error from the previous state of the art on two facial keypoint datasets, AFW and AFLW, by 30\% and beating the current state-of-the-art on 300W without using extra data. We improve performance even further by adding a denoising prediction model based on a novel convnet formulation.Comment: accepted in CVPR 201

    Improving Landmark Localization with Semi-Supervised Learning

    Full text link
    We present two techniques to improve landmark localization in images from partially annotated datasets. Our primary goal is to leverage the common situation where precise landmark locations are only provided for a small data subset, but where class labels for classification or regression tasks related to the landmarks are more abundantly available. First, we propose the framework of sequential multitasking and explore it here through an architecture for landmark localization where training with class labels acts as an auxiliary signal to guide the landmark localization on unlabeled data. A key aspect of our approach is that errors can be backpropagated through a complete landmark localization model. Second, we propose and explore an unsupervised learning technique for landmark localization based on having a model predict equivariant landmarks with respect to transformations applied to the image. We show that these techniques, improve landmark prediction considerably and can learn effective detectors even when only a small fraction of the dataset has landmark labels. We present results on two toy datasets and four real datasets, with hands and faces, and report new state-of-the-art on two datasets in the wild, e.g. with only 5\% of labeled images we outperform previous state-of-the-art trained on the AFLW dataset.Comment: Published as a conference paper in CVPR 201
    • …
    corecore