616 research outputs found

    Integrating continuous differential evolution with discrete local search for meander line RFID antenna design

    Get PDF
    The automated design of meander line RFID antennas is a discrete self-avoiding walk(SAW) problem for which efficiency is to be maximized while resonant frequency is to beminimized. This work presents a novel exploration of how discrete local search may beincorporated into a continuous solver such as differential evolution (DE). A prior DE algorithmfor this problem that incorporates an adaptive solution encoding and a bias favoringantennas with low resonant frequency is extended by the addition of the backbite localsearch operator and a variety of schemes for reintroducing modified designs into the DEpopulation. The algorithm is extremely competitive with an existing ACO approach and thetechnique is transferable to other SAW problems and other continuous solvers. The findingsindicate that careful reintegration of discrete local search results into the continuous populationis necessary for effective performance

    The Kalai-Smorodinski solution for many-objective Bayesian optimization

    Get PDF
    An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame

    Multi-objective Optimization by Uncrowded Hypervolume Gradient Ascent

    Get PDF
    Evolutionary algorithms (EAs) are the preferred method for solving black-box multi-objective optimization problems, but when gradients of the objective functions are available, it is not straightforward to exploit these efficiently. By contrast, gradient-based optimization is well-established for single-objective optimization. A single-objective reformulation of the multi-objective problem could therefore offer a solution. Of particular interest to this end is the recently introduced uncrowded hypervolume (UHV) indicator, which takes into account dominated solutions. In this work, we show that the gradient of the UHV can often be computed, which allows for a direct application of gradient ascent algorithms. We compare this new approach with two EAs for UHV optimization as well as with one gradient-based algorithm for optimizing the well-established hypervolume. On several bi-objective benchmarks, we find that gradient-based algorithms outperform the tested EAs by obtaining a better hypervolume with fewer evaluations whenever exact gradients of the multiple objective functions are available and in case of small evaluation budgets. For larger budgets, however, EAs perform similarly or better. We further find that, when finite differences are used to approximate the gradients of the multiple objectives, our new gradient-based algorithm is still competitive with EAs in most considered benchmarks. Implementations are available at https://github.com/scmaree/uncrowded-hypervolume.Comment: T.M.D. and S.C.M. contributed equally. The final authenticated version is available in the conference proceedings of Parallel Problem Solving from Nature - PPSN XVI. Changes in new version: removed statement about Pareto compliance in abstract; added related work; corrected minor mistake

    Accelerating Manufacturing Decisions using Bayesian Optimization: An Optimization and Prediction Perspective

    Get PDF
    Manufacturing is a promising technique for producing complex and custom-made parts with a high degree of precision. It can also provide us with desired materials and products with specified properties. To achieve that, it is crucial to find out the optimum point of process parameters that have a significant impact on the properties and quality of the final product. Unfortunately, optimizing these parameters can be challenging due to the complex and nonlinear nature of the underlying process, which becomes more complicated when there are conflicting objectives, sometimes with multiple goals. Furthermore, experiments are usually costly, time-consuming, and require expensive materials, man, and machine hours. So, each experiment is valuable and it\u27s critical to determine the optimal experiment location to gain the most comprehensive understanding of the process. Sequential learning is a promising approach to actively learn from the ongoing experiments, iteratively update the underlying optimization routine, and adapt the data collection process on the go. This thesis presents a multi-objective Bayesian optimization framework to find out the optimum processing conditions for a manufacturing setup. It uses an acquisition function to collect data points sequentially and iteratively update its understanding of the underlying design space utilizing a Gaussian Process-based surrogate model. In manufacturing processes, the focus is often on obtaining a rough understanding of the design space using minimal experimentation, rather than finding the optimal parameters. This falls under the category of approximating the underlying function rather than design optimization. This approach can provide material scientists or manufacturing engineers with a comprehensive view of the entire design space, increasing the likelihood of making discoveries or making robust decisions. However, a precise and reliable prediction model is necessary for a good approximation. To meet this requirement, this thesis proposes an epsilon-greedy sequential prediction framework that is distinct from the optimization framework. The data acquisition strategy has been refined to balance exploration and exploitation, and a threshold has been established to determine when to switch between the two. The performance of this proposed optimization and prediction framework is evaluated using real-life datasets against the traditional design of experiments. The proposed frameworks have generated effective optimization and prediction results using fewer experiments

    Computer-Aided Multi-Objective Optimization in Small Molecule Discovery

    Full text link
    Molecular discovery is a multi-objective optimization problem that requires identifying a molecule or set of molecules that balance multiple, often competing, properties. Multi-objective molecular design is commonly addressed by combining properties of interest into a single objective function using scalarization, which imposes assumptions about relative importance and uncovers little about the trade-offs between objectives. In contrast to scalarization, Pareto optimization does not require knowledge of relative importance and reveals the trade-offs between objectives. However, it introduces additional considerations in algorithm design. In this review, we describe pool-based and de novo generative approaches to multi-objective molecular discovery with a focus on Pareto optimization algorithms. We show how pool-based molecular discovery is a relatively direct extension of multi-objective Bayesian optimization and how the plethora of different generative models extend from single-objective to multi-objective optimization in similar ways using non-dominated sorting in the reward function (reinforcement learning) or to select molecules for retraining (distribution learning) or propagation (genetic algorithms). Finally, we discuss some remaining challenges and opportunities in the field, emphasizing the opportunity to adopt Bayesian optimization techniques into multi-objective de novo design

    Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization

    Get PDF
    International audienceThe objective functions in multiobjective optimization problems are often non-linear, noisy, or not available in a closed form and evolutionary multiobjective optimization (EMO) algorithms have been shown to be well applicable in this case. Here, our objective is to facilitate interactive decision making by saving function evaluations outside the "interesting" regions of the search space within a hypervolume-based EMO algorithm. We focus on a basic model where the Decision Maker (DM) is always asked to pick the most desirable solution among a set. In addition to the scenario where this solution is chosen directly, we present the alternative to specify preferences via a set of so-called comparative preference statements. Examples on standard test problems show the working principles, the competitiveness, and the drawbacks of the proposed algorithm in comparison with the recent iTDEA algorithm

    The Rolling Tide Evolutionary Algorithm: A Multi-Objective Optimiser for Noisy Optimisation Problems

    Get PDF
    As the methods for evolutionary multiobjective optimization (EMO) mature and are applied to a greater number of real-world problems, there has been gathering interest in the effect of uncertainty and noise on multiobjective optimization, specifically how algorithms are affected by it, how to mitigate its effects, and whether some optimizers are better suited to dealing with it than others. Here we address the problem of uncertain evaluation, in which the uncertainty can be modeled as an additive noise in objective space. We develop a novel algorithm, the rolling tide evolutionary algorithm (RTEA), which progressively improves the accuracy of its estimated Pareto set, while simultaneously driving the front toward the true Pareto front. It can cope with noise whose characteristics change as a function of location (both design and objective), or which alter during the course of an optimization. Four state-of-the-art noise-tolerant EMO algorithms, as well as four widely used standard EMO algorithms, are compared to RTEA on 70 instances of ten continuous space test problems from the CEC'09 multiobjective optimization test suite. Different instances of these problems are generated by modifying them to exhibit different types and intensities of noise. RTEA seems to provide competitive performance across both the range of test problems used and noise types

    Multi-objective ant colony optimization for the twin-screw configuration problem

    Get PDF
    The Twin-Screw Configuration Problem (TSCP) consists in identifying the best location of a set of available screw elements along a screw shaft. Due to its combinatorial nature, it can be seen as a sequencing problem. In addition, different conflicting objectives may have to be considered when defining a screw configuration and, thus, it is usually tackled as a multi-objective optimization problem. In this research, a multi-objective ant colony optimization (MOACO) algorithm was adapted to deal with the TSCP. The influence of different parameters of the MOACO algorithm was studied and its performance was compared with that of a previously proposed multi-objective evolutionary algorithm and a two-phase local search algorithm. The experimental results showed that MOACO algorithms have a significant potential for solving the TSCP.This work has been supported by the Portuguese Fundacao para a Ciencia e Tecnologia under PhD grant SFRH/BD/21921/2005. Thomas Stutzle acknowledges support of the Belgian F.R.S-FNRS of which he is a research associate, the E-SWARM project, funded by an ERC Advanced Grant, and by the Meta-X project, funded by the Scientific Research Directorate of the French Community of Belgium
    • …
    corecore