168 research outputs found

    Nice labeling problem for event structures: a counterexample

    Full text link
    In this note, we present a counterexample to a conjecture of Rozoy and Thiagarajan from 1991 (called also the nice labeling problem) asserting that any (coherent) event structure with finite degree admits a labeling with a finite number of labels, or equivalently, that there exists a function f:NNf: \mathbb{N} \mapsto \mathbb{N} such that an event structure with degree n\le n admits a labeling with at most f(n)f(n) labels. Our counterexample is based on the Burling's construction from 1965 of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic numbers and the bijection between domains of event structures and median graphs established by Barth\'elemy and Constantin in 1993

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    On embeddings of CAT(0) cube complexes into products of trees

    Full text link
    We prove that the contact graph of a 2-dimensional CAT(0) cube complex X{\bf X} of maximum degree Δ\Delta can be coloured with at most ϵ(Δ)=MΔ26\epsilon(\Delta)=M\Delta^{26} colours, for a fixed constant MM. This implies that X{\bf X} (and the associated median graph) isometrically embeds in the Cartesian product of at most ϵ(Δ)\epsilon(\Delta) trees, and that the event structure whose domain is X{\bf X} admits a nice labeling with ϵ(Δ)\epsilon(\Delta) labels. On the other hand, we present an example of a 5-dimensional CAT(0) cube complex with uniformly bounded degrees of 0-cubes which cannot be embedded into a Cartesian product of a finite number of trees. This answers in the negative a question raised independently by F. Haglund, G. Niblo, M. Sageev, and the first author of this paper.Comment: Some small corrections; main change is a correction of the computation of the bounds in Theorem 1. Some figures repaire

    Central limit theorem for exponentially quasi-local statistics of spin models on Cayley graphs

    Full text link
    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs and taking values in a countable space but under the stronger assumptions of {\alpha}-mixing (for local statistics) and exponential {\alpha}-mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.Comment: Minor changes incorporated based on suggestions by referee

    The satisfiability threshold for random linear equations

    Full text link
    Let AA be a random m×nm\times n matrix over the finite field FqF_q with precisely kk non-zero entries per row and let yFqmy\in F_q^m be a random vector chosen independently of AA. We identify the threshold m/nm/n up to which the linear system Ax=yA x=y has a solution with high probability and analyse the geometry of the set of solutions. In the special case q=2q=2, known as the random kk-XORSAT problem, the threshold was determined by [Dubois and Mandler 2002, Dietzfelbinger et al. 2010, Pittel and Sorkin 2016], and the proof technique was subsequently extended to the cases q=3,4q=3,4 [Falke and Goerdt 2012]. But the argument depends on technically demanding second moment calculations that do not generalise to q>3q>3. Here we approach the problem from the viewpoint of a decoding task, which leads to a transparent combinatorial proof
    corecore