1,994 research outputs found

    A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Full text link
    In Distributed Interactive Applications (DIA) such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Development of a Physics-Aware Dead Reckoning Mechanism for Distributed Interactive Applications

    Get PDF
    Distributed Interactive Applications (DIAs) are a class of software that allow geographically remote users to interact within a shared virtual environment. Many DIAs seek to present a rich and realistic virtual world to users, both on a visual and behavioural level. A relatively recent addition to virtual environments (both distributed and single user) to achieve the latter has been the simulation of realistic physical phenomena between objects in the environment. However, the application of physics simulation to virtual environments in DIAs currently lags that of single user environments. This is primarily due to the unavailability of entity state update mechanisms which can maintain consistency in such physics-rich environments. The difference is particularly evident in applications built on a peer-to-peer architecture, as a lack of a single authority presents additional challenges in synchronising the state of shared objects while also presenting a responsive simulation. This thesis proposes a novel state maintenance mechanism for physics-rich environments in peer-to-peer DIAs composed of two parts: a dynamic authority scheme for shared objects, and a physics-aware dead reckoning model with an adaptive error threshold. The first part is intended to place a bound on the overall inconsistency present in shared objects, while the second is implemented to minimise the instantaneous inconsistency during users’ interactions with shared objects. A testbed application is also described, which is used to validate the performance of the proposed mechanism. The state maintenance mechanism is implemented for a single type of physicsaware application, and demonstrates a marked improvement in consistency for that application. However, several flexible terms are described in its implementation, as well as their potential relevance to alternative applications. Finally, it should be noted that the physics-aware dead reckoning model does not depend on the authority scheme, and can therefore be employed with alternative authority scheme

    Attentional bias in excessive Internet gamers: Experimental investigations using an addiction Stroop and a visual probe

    Get PDF
    Background and aims Internet Gaming Disorder is included in the Diagnostic and statistical manual of mental disorders (5th edition) as a disorder that merits further research. The diagnostic criteria are based on those for Substance Use Disorder and Gambling Disorder. Excessive gamblers and persons with Substance Use Disorder show attentional biases towards stimuli related to their addictions. We investigated whether excessive Internet gamers show a similar attentional bias, by using two established experimental paradigms. Methods We measured reaction times of excessive Internet gamers and non-gamers (N = 51, 23.7 ± 2.7 years) by using an addiction Stroop with computer-related and neutral words, as well as a visual probe with computer-related and neutral pictures. Mixed design analyses of variance with the between-subjects factor group (gamer/non-gamer) and the within-subjects factor stimulus type (computer-related/neutral) were calculated for the reaction times as well as for valence and familiarity ratings of the stimulus material. Results In the addiction Stroop, an interaction for group × word type was found: Only gamers showed longer reaction times to computer-related words compared to neutral words, thus exhibiting an attentional bias. In the visual probe, no differences in reaction time between computer-related and neutral pictures were found in either group, but the gamers were faster overall. Conclusions An attentional bias towards computer-related stimuli was found in excessive Internet gamers, by using an addiction Stroop but not by using a visual probe. A possible explanation for the discrepancy could lie in the fact that the visual probe may have been too easy for the gamers

    Dynamic Hybrid Strategy Models for Networked Mulitplayer Games

    Get PDF
    Two of the primary factors in the development of networked multiplayer computer games are network latency and network bandwidth. Reducing the effects of network latency helps maintain game-state fidelity, while reducing network bandwidth usage increases the scalability of the game to support more players. The current technique to address these issues is to have each player locally simulate remote objects (e.g. other players). This is known as dead reckoning. Provided the local simulations are accurate to within a given tolerance, dead reckoning reduces the amount of information required to be transmitted between players. This paper presents an extension to the recently proposed Hybrid Strategy Model (HSM) technique, known as the Dynamic Hybrid Strategy Model (DHSM). By dynamically switching between models of user behaviour, the DHSM attempts to improve the prediction capability of the local simulations, allowing them to stay within a given tolerance for a longer amount of time. This can lead to further reductions in the amount of information required to be transmitted. Presented results for the case of a simple first-person shooter (FPS) game demonstrate the validity of the DHSM approach over dead reckoning, leading to a reduction in the number of state update packets sent and indicating significant potential for network traffic reduction in various multiplayer games/simulations
    corecore