1,516 research outputs found

    On the convergence of the hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces

    Get PDF
    In this paper the hp-version of the boundary element method is applied to the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. The underlying meshes are supposed to be quasi-uniform. We use \bH(\div)-conforming discretisations with quadrilateral elements of Raviart-Thomas type and establish quasi-optimal convergence of hp-approximations. Main ingredient of our analysis is a new \tilde\bH^{-1/2}(\div)-conforming p-interpolation operator that assumes only \bH^r\cap\tilde\bH^{-1/2}(\div)-regularity (r>0r>0) and for which we show quasi-stability with respect to polynomial degrees

    On a preconditioner for time domain boundary element methods

    Full text link
    We propose a time stepping scheme for the space-time systems obtained from Galerkin time-domain boundary element methods for the wave equation. Based on extrapolation, the method proves stable, becomes exact for increasing degrees of freedom and can be used either as a preconditioner, or as an efficient standalone solver for scattering problems with smooth solutions. It also significantly reduces the number of GMRES iterations for screen problems, with less regularity, and we explore its limitations for enriched methods based on non-polynomial approximation spaces.Comment: 15 pages, 16 figure

    hp-version time domain boundary elements for the wave equation on quasi-uniform meshes

    Get PDF
    Solutions to the wave equation in the exterior of a polyhedral domain or a screen in R3\mathbb{R}^3 exhibit singular behavior from the edges and corners. We present quasi-optimal hphp-explicit estimates for the approximation of the Dirichlet and Neumann traces of these solutions for uniform time steps and (globally) quasi-uniform meshes on the boundary. The results are applied to an hphp-version of the time domain boundary element method. Numerical examples confirm the theoretical results for the Dirichlet problem both for screens and polyhedral domains.Comment: 41 pages, 11 figure

    Convergence analysis of a multigrid algorithm for the acoustic single layer equation

    Get PDF
    We present and analyze a multigrid algorithm for the acoustic single layer equation in two dimensions. The boundary element formulation of the equation is based on piecewise constant test functions and we make use of a weak inner product in the multigrid scheme as proposed in \cite{BLP94}. A full error analysis of the algorithm is presented. We also conduct a numerical study of the effect of the weak inner product on the oscillatory behavior of the eigenfunctions for the Laplace single layer operator

    Acoustic scattering : high frequency boundary element methods and unified transform methods

    Get PDF
    We describe some recent advances in the numerical solution of acoustic scattering problems. A major focus of the paper is the efficient solution of high frequency scattering problems via hybrid numerical-asymptotic boundary element methods. We also make connections to the unified transform method due to A. S. Fokas and co-authors, analysing particular instances of this method, proposed by J. A. De-Santo and co-authors, for problems of acoustic scattering by diffraction gratings
    corecore