4,553 research outputs found

    Cooperative learning in multi-agent systems from intermittent measurements

    Full text link
    Motivated by the problem of tracking a direction in a decentralized way, we consider the general problem of cooperative learning in multi-agent systems with time-varying connectivity and intermittent measurements. We propose a distributed learning protocol capable of learning an unknown vector μ\mu from noisy measurements made independently by autonomous nodes. Our protocol is completely distributed and able to cope with the time-varying, unpredictable, and noisy nature of inter-agent communication, and intermittent noisy measurements of μ\mu. Our main result bounds the learning speed of our protocol in terms of the size and combinatorial features of the (time-varying) networks connecting the nodes

    Random Forests and Networks Analysis

    Full text link
    D. Wilson~\cite{[Wi]} in the 1990's described a simple and efficient algorithm based on loop-erased random walks to sample uniform spanning trees and more generally weighted trees or forests spanning a given graph. This algorithm provides a powerful tool in analyzing structures on networks and along this line of thinking, in recent works~\cite{AG1,AG2,ACGM1,ACGM2} we focused on applications of spanning rooted forests on finite graphs. The resulting main conclusions are reviewed in this paper by collecting related theorems, algorithms, heuristics and numerical experiments. A first foundational part on determinantal structures and efficient sampling procedures is followed by four main applications: 1) a random-walk-based notion of well-distributed points in a graph 2) how to describe metastable dynamics in finite settings by means of Markov intertwining dualities 3) coarse graining schemes for networks and associated processes 4) wavelets-like pyramidal algorithms for graph signals.Comment: Survey pape
    corecore