2,534 research outputs found

    Study of Gaussian Relay Channels with Correlated Noises

    Full text link
    In this paper, we consider full-duplex and half-duplex Gaussian relay channels where the noises at the relay and destination are arbitrarily correlated. We first derive the capacity upper bound and the achievable rates with three existing schemes: Decode-and-Forward (DF), Compress-and-Forward (CF), and Amplify-and-Forward (AF). We present two capacity results under specific noise correlation coefficients, one being achieved by DF and the other being achieved by direct link transmission (or a special case of CF). The channel for the former capacity result is equivalent to the traditional Gaussian degraded relay channel and the latter corresponds to the Gaussian reversely-degraded relay channel. For CF and AF schemes, we show that their achievable rates are strictly decreasing functions over the negative correlation coefficient. Through numerical comparisons under different channel settings, we observe that although DF completely disregards the noise correlation while the other two can potentially exploit such extra information, none of the three relay schemes always outperforms the others over different correlation coefficients. Moreover, the exploitation of noise correlation by CF and AF accrues more benefit when the source-relay link is weak. This paper also considers the optimal power allocation problem under the correlated-noise channel setting. With individual power constraints at the relay and the source, it is shown that the relay should use all its available power to maximize the achievable rates under any correlation coefficient. With a total power constraint across the source and the relay, the achievable rates are proved to be concave functions over the power allocation factor for AF and CF under full-duplex mode, where the closed-form power allocation strategy is derived.Comment: 24 pages, 7 figures, submitted to IEEE Transactions on Communication

    Wireless Network Information Flow: A Deterministic Approach

    Full text link
    In a wireless network with a single source and a single destination and an arbitrary number of relay nodes, what is the maximum rate of information flow achievable? We make progress on this long standing problem through a two-step approach. First we propose a deterministic channel model which captures the key wireless properties of signal strength, broadcast and superposition. We obtain an exact characterization of the capacity of a network with nodes connected by such deterministic channels. This result is a natural generalization of the celebrated max-flow min-cut theorem for wired networks. Second, we use the insights obtained from the deterministic analysis to design a new quantize-map-and-forward scheme for Gaussian networks. In this scheme, each relay quantizes the received signal at the noise level and maps it to a random Gaussian codeword for forwarding, and the final destination decodes the source's message based on the received signal. We show that, in contrast to existing schemes, this scheme can achieve the cut-set upper bound to within a gap which is independent of the channel parameters. In the case of the relay channel with a single relay as well as the two-relay Gaussian diamond network, the gap is 1 bit/s/Hz. Moreover, the scheme is universal in the sense that the relays need no knowledge of the values of the channel parameters to (approximately) achieve the rate supportable by the network. We also present extensions of the results to multicast networks, half-duplex networks and ergodic networks.Comment: To appear in IEEE transactions on Information Theory, Vol 57, No 4, April 201
    • …
    corecore