223,504 research outputs found

    Smart grid interoperability use cases for extending electricity storage modeling within the IEC Common Information Model

    Get PDF
    Copyright @ 2012 IEEEThe IEC Common Information Model (CIM) is recognized as a core standard, supporting electricity transmission system interoperability. Packages of UML classes make up its domain ontology to enable a standardised abstraction of network topology and proprietary power system models. Since the early days of its design, the CIM has grown to reflect the widening scope and detail of utility information use cases as the desire to interoperate between a greater number of systems has increased. The cyber-physical nature of the smart grid places even greater demand upon the CIM to model future scenarios for power system operation and management that are starting to arise. Recent developments of modern electricity networks have begun to implement electricity storage (ES) technologies to provide ancillary balancing services, useful to grid integration of large-scale renewable energy systems. In response to this we investigate modeling of grid-scale electricity storage, by drawing on information use cases for future smart grid operational scenarios at National Grid, the GB Transmission System Operator. We find current structures within the CIM do not accommodate the informational requirements associated with novel ES systems and propose extensions to address this requirement.This study is supported by the UK National Grid and Brunel Universit

    Designing Institutional Infrastructure for E-Science

    Get PDF
    A new generation of information and communication infrastructures, including advanced Internet computing and Grid technologies, promises more direct and shared access to more widely distributed computing resources than was previously possible. Scientific and technological collaboration, consequently, is more and more dependent upon access to, and sharing of digital research data. Thus, the U.S. NSF Directorate committed in 2005 to a major research funding initiative, “Cyberinfrastructure Vision for 21st Century Discovery”. These investments are aimed at enhancement of computer and network technologies, and the training of researchers. Animated by much the same view, the UK e-Science Core Programme has preceded the NSF effort in funding development of an array of open standard middleware platforms, intended to support Grid enabled science and engineering research. This proceeds from the sceptical view that engineering breakthroughs alone will not be enough to achieve the outcomes envisaged. Success in realizing the potential of e-Science—through the collaborative activities supported by the "cyberinfrastructure," if it is to be achieved, will be the result of a nexus of interrelated social, legal, and technical transformations.e-science, cyberinfrastructure, information sharing, research

    Grid: From EGEE to EGI and from INFN-GRID to IGI

    Get PDF
    In the last fifteen years the approach of the “computational Grid” has changed the way to use computing resources. Grid computing has raised interest worldwide in academia, industry, and government with fast development cycles. Great efforts, huge funding and resources have been made available through national, regional and international initiatives aiming at providing Grid infrastructures, Grid core technologies, Grid middleware and Grid applications. The Grid software layers reflect the architecture of the services developed so far by the most important European and international projects. In this paper Grid e-Infrastructure story is given, detailing European, Italian and international projects such as EGEE, INFN-Grid and NAREGI. In addition the sustainability issue in the long-term perspective is described providing plans by European and Italian communities with EGI and IGI

    Leaders and Lemmings: Organizational Responses to Smart Grid Transformation

    Get PDF
    After a century of relative stability in the electricity sector, introduction of the smart grid has triggered a period of great uncertainty with the potential for wide-spread and long-lasting impacts. When faced with pressures that threaten established institutionalized practices, incumbent organizations may respond in a variety of ways, ranging from resistance to manipulation. This paper reports the findings from a qualitative field study that explores how utilities, the organizations at the core of the electricity sector, are responding to institutional pressures and what it means for their deployment of smart grid technologies. Under coercive and mimetic pressures, utilities respond with avoidance by taking a wait-and-see approach, or acquiescence, simply following direction of others. In contrast, organizations that perceive benefits of smart grid technologies beyond the need for compliance adopt manipulation strategies, becoming more engaged in shaping the transformation and experimenting with new technologies to enhance their stature and performance

    Power Electronics Technology for Large-Scale Renewable Energy Generation

    Get PDF
    Grid integration of renewable energy (REN) requires efficient and reliable power conversion stages, particularly with an increasing demand for high controllability and flexibility seen from the grid side. Underpinned by advanced control and information technologies, power electronics converters play an essential role in large-scale REN generation. However, the use of power converters has also exposed several challenges in conventional power grids, e.g., reducing the system inertia. In this article, grid integration using power electronics is presented for large-scale REN generation. Technical issues and requirements are discussed with a special focus on grid-connected wind, solar photovoltaic, and energy storage systems. In addition, the core of the energy generation and conversion—control for individual power converters (e.g., general current control) and for the system level (e.g., coordinated operation of large-scale energy systems)—is briefly discussed. Future research perspectives are then presented, which further advance large-scale REN generation technologies by incorporating more power electronics systems

    An Active Reliable Multicast Framework for the Grids

    Get PDF
    Computational Grids are foreseen to be one of the most critical yet challenging technologies to meet the exponentially growing demands for high-performance computing in a large variety of scientific disciplines. Most of these grid applications imply multiple participants and in many cases make an intensive usage of data distribution and collective opertaions. In this paper, we propose a multicast framework consisting of an active reliable protocol with specialized active services located at the edges of the core network for providing low-latency and low-overhead multicast transfers on computational grid

    Grid Analysis of Radiological Data

    Get PDF
    IGI-Global Medical Information Science Discoveries Research Award 2009International audienceGrid technologies and infrastructures can contribute to harnessing the full power of computer-aided image analysis into clinical research and practice. Given the volume of data, the sensitivity of medical information, and the joint complexity of medical datasets and computations expected in clinical practice, the challenge is to fill the gap between the grid middleware and the requirements of clinical applications. This chapter reports on the goals, achievements and lessons learned from the AGIR (Grid Analysis of Radiological Data) project. AGIR addresses this challenge through a combined approach. On one hand, leveraging the grid middleware through core grid medical services (data management, responsiveness, compression, and workflows) targets the requirements of medical data processing applications. On the other hand, grid-enabling a panel of applications ranging from algorithmic research to clinical use cases both exploits and drives the development of the services

    A novel nature-inspired picogrid for flexible PV application in rural electrification systems

    Get PDF
    Abstract: The Picogrid is a response to the need for electrification in off-grid rural areas in Sub-Saharan Africa. The concept lends itself to the inclusion of renewable energy technologies such as solar photovoltaics and allows for a robust, resilient solution for rural applications. The biomimetic or nature-inspired design allows for uncomplicated scaling of the operational core system. Additionally, the system is fault tolerant and exhibits self-healing properties
    • 

    corecore