6,895 research outputs found

    Localisation of the melanocortin-2-receptor and its accessory proteins in the developing and adult adrenal gland

    Get PDF
    The melanocortin-2-receptor (MC2R)/MC2R accessory protein (MRAP) complex is critical to the production of glucocorticoids from the adrenal cortex. Inactivating mutations in either MC2R or MRAP result in the clinical condition familial glucocorticoid deficiency. The localisation of MC2R together with MRAP within the adrenal gland has not previously been reported. Furthermore, MRAP2, a paralogue of MRAP, has been shown in vitro to have a similar function to MRAP, facilitating MC2R trafficking and responsiveness to ACTH. Despite similar MC2R accessory functions, in vivo, patients with inactivating mutations of MRAP fail to be rescued by a functioning MRAP2 gene, suggesting differences in adrenal expression, localisation and/or function between the two MRAPs. In this study on the rat adrenal gland, we demonstrate that while MRAP and MC2R are highly expressed in the zona fasciculata, MRAP2 is expressed throughout the adrenal cortex in low quantities. In the developing adrenal gland, both MRAP and MRAP2 are equally well expressed. The MC2R/MRAP2 complex requires much higher concentrations of ACTH to activate compared with the MC2R/MRAP complex. Interestingly, expression of MC2R and MRAP in the undifferentiated zone would support the notion that ACTH may play an important role in adrenal cell differentiation and maintenance

    Complications of Cushing's syndrome: state of the art

    Get PDF
    Cushing's syndrome is a serious endocrine disease caused by chronic, autonomous, and excessive secretion of cortisol. The syndrome is associated with increased mortality and impaired quality of life because of the occurrence of comorbidities. These clinical complications include metabolic syndrome, consisting of systemic arterial hypertension, visceral obesity, impairment of glucose metabolism, and dyslipidaemia; musculoskeletal disorders, such as myopathy, osteoporosis, and skeletal fractures; neuropsychiatric disorders, such as impairment of cognitive function, depression, or mania; impairment of reproductive and sexual function; and dermatological manifestations, mainly represented by acne, hirsutism, and alopecia. Hypertension in patients with Cushing's syndrome has a multifactorial pathogenesis and contributes to the increased risk for myocardial infarction, cardiac failure, or stroke, which are the most common causes of death; risks of these outcomes are exacerbated by a prothrombotic diathesis and hypokalaemia. Neuropsychiatric disorders can be responsible for suicide. Immune disorders are common; immunosuppression during active disease causes susceptibility to infections, possibly complicated by sepsis, an important cause of death, whereas immune rebound after disease remission can exacerbate underlying autoimmune diseases. Prompt treatment of cortisol excess and specific treatments of comorbidities are crucial to prevent serious clinical complications and reduce the mortality associated with Cushing's syndrome

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    T-ALL and thymocytes : a message of noncoding RNAs

    Get PDF
    In the last decade, the role for noncoding RNAs in disease was clearly established, starting with microRNAs and later expanded towards long noncoding RNAs. This was also the case for T cell acute lymphoblastic leukemia, which is a malignant blood disorder arising from oncogenic events during normal T cell development in the thymus. By studying the transcriptomic profile of protein-coding genes, several oncogenic events leading to T cell acute lymphoblastic leukemia (T-ALL) could be identified. In recent years, it became apparent that several of these oncogenes function via microRNAs and long noncoding RNAs. In this review, we give a detailed overview of the studies that describe the noncoding RNAome in T-ALL oncogenesis and normal T cell development

    Pragmatic trials

    Get PDF
    No abstract available
    • …
    corecore