254 research outputs found

    MSWEP : 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data

    Get PDF
    Current global precipitation (P) datasets do not take full advantage of the complementary nature of satellite and reanalysis data. Here, we present Multi-Source Weighted-Ensemble Precipitation (MSWEP) version 1.1, a global P dataset for the period 1979-2015 with a 3hourly temporal and 0.25 degrees ffi spatial resolution, specifically designed for hydrological modeling. The design philosophy of MSWEP was to optimally merge the highest quality P data sources available as a function of timescale and location. The long-term mean of MSWEP was based on the CHPclim dataset but replaced with more accurate regional datasets where available. A correction for gauge under-catch and orographic effects was introduced by inferring catchment-average P from streamflow (Q) observations at 13 762 stations across the globe. The temporal variability of MSWEP was determined by weighted averaging of P anomalies from seven datasets; two based solely on interpolation of gauge observations (CPC Unified and GPCC), three on satellite remote sensing (CMORPH, GSMaP-MVK, and TMPA 3B42RT), and two on atmospheric model reanalysis (ERA-Interim and JRA-55). For each grid cell, the weight assigned to the gauge-based estimates was calculated from the gauge network density, while the weights assigned to the satellite-and reanalysis-based estimates were calculated from their comparative performance at the surrounding gauges. The quality of MSWEP was compared against four state-of-the-art gauge-adjusted P datasets (WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) using independent P data from 125 FLUXNET tower stations around the globe. MSWEP obtained the highest daily correlation coefficient (R) among the five P datasets for 60.0% of the stations and a median R of 0.67 vs. 0.44-0.59 for the other datasets. We further evaluated the performance of MSWEP using hydrological modeling for 9011 catchments (< 50 000 km(2)) across the globe. Specifically, we calibrated the simple conceptual hydrological model HBV (Hydrologiska Byrans Vattenbalansavdelning) against daily Q observations with P from each of the different datasets. For the 1058 sparsely gauged catchments, representative of 83.9% of the global land surface (excluding Antarctica), MSWEP obtained a median calibration NSE of 0.52 vs. 0.29-0.39 for the other P datasets. MSWEP is available via http://www.gloh2o.org

    Multiregional Satellite Precipitation Products Evaluation over Complex Terrain

    Get PDF
    An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network

    Comprehensive evaluation of high-resolution satellite-based precipitation products over China

    Get PDF
    Characterizing the errors in satellite-based precipitation estimation products is crucial for understanding their effects in hydrological applications. Six precipitation products derived from three algorithms are comprehensively evaluated against gauge data over mainland China from December 2006 to November 2010. These products include three satellite-only estimates: the Global Satellite Mapping of Precipitation Microwave-IR Combined Product (GSMaP_MVK), the Climate Prediction Center (CPC) MORPHing (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), as well as their gauge-corrected counterparts: the GSMaP Gauge-calibrated Product (GSMaP_Gauge), bias-corrected CMORPH (CMORPH_CRT), and PERSIANN Climate Data Record (PERSIANN-CDR). Overall, the bias-correction procedures largely reduce various errors for the three groups of satellite-based precipitation products. GSMaP_Gauge produces better fractional coverage with the highest correlation (0.95) and the lowest RMSE (0.53 mm/day) but also high RB (15.77%). In general, CMORPH_CRT amounts are closer to the gauge reference. CMORPH shows better performance than GSMaP_MVK and PERSIANN with the highest CC (0.82) and the lowest RMSE (0.93 mm/day), but also presents a relatively high RB (-19.60%). In winter, all six satellite precipitation estimates have comparatively poor capability, with the IR-based PERSIANN_CDR exhibiting the closest performance to the gauge reference. Both satellite-only and gauge-corrected satellite products show poor capability in detecting occurrence of precipitation with a low POD (40%)

    Inter-comparison of high-resolution satellite precipitation products over Central Asia

    Get PDF
    This paper examines the spatial error structures of eight precipitation estimates derived from four different satellite retrieval algorithms including TRMM Multi-satellite Precipitation Analysis (TMPA), Climate Prediction Center morphing technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). All the original satellite and bias-corrected products of each algorithm (3B42RTV7 and 3B42V7, CMORPH_RAW and CMORPH_CRT, GSMaP_MVK and GSMaP_Gauge, PERSIANN_RAW and PERSIANN_CDR) are evaluated against ground-based Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) over Central Asia for the period of 2004 to 2006. The analyses show that all products except PERSIANN exhibit overestimation over Aral Sea and its surrounding areas. The bias-correction improves the quality of the original satellite TMPA products and GSMaP significantly but slightly in CMORPH and PERSIANN over Central Asia. 3B42RTV7 overestimates precipitation significantly with large Relative Bias (RB) (128.17%) while GSMaP_Gauge shows consistent high correlation coefficient (CC) (>0.8) but RB fluctuates between -57.95% and 112.63%. The PERSIANN_CDR outperforms other products in winter with the highest CC (0.67). Both the satellite-only and gauge adjusted products have particularly poor performance in detecting rainfall events in terms of lower POD (less than 65%), CSI (less than 45%) and relatively high FAR (more than 35%)

    Seasonal effect on spatial and temporal consistency of the new GPM-based IMERG-v5 and GSMaP-v7 satellite precipitation estimates in Brazil’s Central Plateau Region

    Get PDF
    This study assesses the performance of the new Global Precipitation Measurement (GPM)-based satellite precipitation estimates (SPEs) datasets in the Brazilian Central Plateau and compares it with the previous Tropical Rainfall Measurement Mission (TRMM)-era datasets. To do so, the Integrated Multi-satellitE Retrievals for GPM (IMERG)-v5 and the Global Satellite Mapping of Precipitation (GSMaP)-v7 were evaluated at their original 0.1 spatial resolution and for a 0.25 grid for comparison with TRMM Multi-satellite Precipitation Analysis (TMPA). The assessment was made on an annual, monthly, and daily basis for both wet and dry seasons. Overall, IMERG presents the best annual and monthly results. In both time steps, IMERG’s precipitation estimations present bias with lower magnitudes and smaller root-mean-square error. However, GSMaP performs slightly better for the daily time step based on categorical and quantitative statistical analysis. Both IMERG and GSMaP estimates are seasonally influenced, with the highest difficulty in estimating precipitation occurring during the dry season. Additionally, the study indicates that GPM-based SPEs products are capable of continuing TRMM-based precipitation monitoring with similar or even better accuracy than obtained previously with the widely used TMPA product

    An Image Similarity Evaluation in Rainfall Forecasting Model

    Get PDF
    The Global Satellite Mapping of Precipitation or GSMaP data which is used to display the rainfall data was used to analyze and create the rainfall forecasting model. This work is the evaluation of this rainfall forecasting model which is the short-term forecast. The GSMaP forecasting data were matched with the GSMaP history data and calculate their similarity values by applying the original image matching method. The modification of Rainfall Forecasting Model and its evaluation that applied the original image instead of the image hash improve the accuracy of rainfall forecasted results

    Rainfall-runoff modeling in arid areas

    Get PDF
    The Wadi Dhuliel catchment/ North east Jordan, as any other arid area has distinctive hydrological features with limited water resources. The hydrological regime is characterized by high variability of temporal and spatial rainfall distributions, flash floods, absence of base flow, and high rates of evapotranspiration. The aim of this Ph.D. thesis was to apply lumped and distributed models to simulate stream flow in the Wadi Dhuliel arid catchment. Intensive research was done to estimate the spatial and temporal rainfall distributions using remote sensing. Because most rainfall-runoff models were undertaken for other climatic zones, an attempt was made to study limitations and challenges and improve rainfall-runoff modeling in arid areas in general and for the Wadi Dhuliel in particular. The thesis is divided into three hierarchically ordered research topics. In the first part and research paper, the metric conceptual IHACRES model was applied to daily and storm events time scales, including data from 19 runoff events during the period 1986-1992. The IHACRES model was extended for snowfall in order to cope with such extreme events. The performance of the IHACRES model on daily data was rather poor while the performance on the storm events scale shows a good agreement between observed and simulated streamflow. The modeled outputs were expected to be sensitive when the observed flood was relatively small. The optimum parameter values were influenced by the length of a time series used for calibration and event specific changes. In the second research paper, the Global Satellite Mapping of Precipitation (GSMaP_MVK+) dataset was used to evaluate the precipitation rates over the Wadi Dhuliel arid catchment for the period from January 2003 to March 2008. Due to the scarcity of the ground rain gauge network, the detailed structure of the rainfall distribution was inadequate, so an independent from interpolation techniques was used. Three meteorological stations and six rain gauges were used to adjust and compare with GSMaP_MVK+ estimates. Comparisons between GSMaP_MVK+ measurements and ground rain gauge records show distinct regions of correlation, as well as areas where GSMaP_MVK+ systematically over- and underestimated ground rain gauge records. A multiple linear regression (MLR) model was used to derive the relationship between rainfall and GSMaP_MVK+ in conjunction with temperature, relative humidity, and wind speed. The MLR equations were defined for the three meteorological stations. The ‘best’ fit of the MLR model for each station was chosen and used to interpolate a multiscale temporal and spatial distribution. Results show that the rainfall distribution over the Wadi Dhuliel is characterized by clear west-east and north-south gradients. Estimates from the monthly MLR model were more reliable than estimates obtained using daily data. The adjusted GSMaP_MVK+ dataset performed well in capturing the spatial patterns of the rainfall at monthly and annual time scales, while daily estimation showed some weakness for light and moderate storms. In the third research paper, the HEC-HMS and IHACRES rainfall runoff models were applied to simulate a single streamflow event in the Wadi Dhuliel catchment that occurred in 30-31.01.2008. Both models are considered suitable for arid conditions. The HEC-HMS model application was done in conjunction with the HEC-GeoHMS extension in ArcView 3.3. Streamflow estimation was performed on hourly data. The aim of this study was to develop a new framework of rainfall-runoff model applications in arid catchment by integrating a re-adjusted satellite derived rainfall dataset (GSMaP_MVK+) to determine the location of the rainfall storm. Each model has its own input data sets. HEC-HMS input data include soil type, land use/land cover map, and slope map. IHACRES input data sets include hourly rainfall and temperature. The model was calibrated and validated using observed stream flow data collected from Al-Za’atari discharge station. IHACRES shows some weaknesses, while the flow comparison between the calibrated streamflow results agrees well with the observed streamflow data of the HEC-HMS model. The Nash-Sutcliffe efficiency (Ef) for both models was 0.51, and 0.88 respectively. The application of HEC-HMS model in this study is considered to be satisfactory

    Precipitation diurnal cycle assessment of satellite-based estimates over Brazil

    Get PDF
    The main objective of this study is to assess the ability of several high-resolution satellite-based precipitation estimates to represent the Precipitation Diurnal Cycle (PDC) over Brazil during the 2014–2018 period, after the launch of the Global Precipitation Measurement satellite (GPM). The selected algorithms are the Global Satellite Mapping of Precipitation (GSMaP), The Integrated Multi-satellitE Retrievals for GPM (IMERG) and Climate Prediction Center (CPC) MORPHing technique (CMORPH). Hourly rain gauge data from different national and regional networks were used as the reference dataset after going through rigid quality control tests. All datasets were interpolated to a common 0.1° × 0.1° grid every 3 h for comparison. After a hierarchical cluster analysis, seven regions with different PDC characteristics (amplitude and phase) were selected for this study. The main results of this research could be summarized as follow: (i) Those regions where thermal heating produce deep convective clouds, the PDC is better represented by all algorithms (in term of amplitude and phase) than those regions driven by shallow convection or low-level circulation; (ii) the GSMaP suite (GSMaP-Gauge (G) and GSMaP-Motion Vector Kalman (MVK)), in general terms, outperforms the rest of the algorithms with lower bias and less dispersion. In this case, the gauge-adjusted version improves the satellite-only retrievals of the same algorithm suggesting that daily gauge-analysis is useful to reduce the bias in a sub-daily scale; (iii) IMERG suite (IMERG-Late (L) and IMERG-Final (F)) overestimates rainfall for almost all times and all the regions, while the satellite-only version provide better results than the final version; (iv) CMORPH has the better performance for a transitional regime between a coastal land-sea breeze and a continental amazonian regime. Further research should be performed to understand how shallow clouds processes and convective/stratiform classification is performed in each algorithm to improve the representativity of diurnal cycle
    • 

    corecore