16,191 research outputs found

    Consequences of Symmetries on the Analysis and Construction of Turbulence Models

    Get PDF
    Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ...), symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Control of multiscale systems with constraints. 1. Basic principles of the concept of evolution of systems with varying constraints

    Get PDF
    Physical fundamentals of the self-organizing theory for the system with varying constraints are considered. A variation principle, specifically the principle of dynamic harmonization as a generalization of the Gauss-Hertz principle for the systems with varying internal structure is formulated. In compliance with this principle the system evolves through dynamics of the processes leading to harmonization of the internal multiscale structure of the system and its connections with external actions as a result of minimizing the dynamic harmonization function. Main principles of the shell model of self-organization under the action of the dominating entropic disturbance are formulated.Comment: First par

    Novel universality classes of coupled driven diffusive systems

    Full text link
    Motivated by the phenomenologies of dynamic roughening of strings in random media and magnetohydrodynamics, we examine the universal properties of driven diffusive system with coupled fields. We demonstrate that cross-correlations between the fields lead to amplitude-ratios and scaling exponents varying continuosly with the strength of these cross-correlations. The implications of these results for experimentally relevant systems are discussed.Comment: To appear in Phys. Rev. E (Rapid Comm.) (2003

    Inertial Frame Independent Forcing for Discrete Velocity Boltzmann Equation: Implications for Filtered Turbulence Simulation

    Full text link
    We present a systematic derivation of a model based on the central moment lattice Boltzmann equation that rigorously maintains Galilean invariance of forces to simulate inertial frame independent flow fields. In this regard, the central moments, i.e. moments shifted by the local fluid velocity, of the discrete source terms of the lattice Boltzmann equation are obtained by matching those of the continuous full Boltzmann equation of various orders. This results in an exact hierarchical identity between the central moments of the source terms of a given order and the components of the central moments of the distribution functions and sources of lower orders. The corresponding source terms in velocity space are then obtained from an exact inverse transformation due to a suitable choice of orthogonal basis for moments. Furthermore, such a central moment based kinetic model is further extended by incorporating reduced compressibility effects to represent incompressible flow. Moreover, the description and simulation of fluid turbulence for full or any subset of scales or their averaged behavior should remain independent of any inertial frame of reference. Thus, based on the above formulation, a new approach in lattice Boltzmann framework to incorporate turbulence models for simulation of Galilean invariant statistical averaged or filtered turbulent fluid motion is discussed.Comment: 37 pages, 1 figur
    corecore