453 research outputs found

    Statistical Studies of Fading in Underwater Wireless Optical Channels in the Presence of Air Bubble, Temperature, and Salinity Random Variations (Long Version)

    Get PDF
    Optical signal propagation through underwater channels is affected by three main degrading phenomena, namely absorption, scattering, and fading. In this paper, we experimentally study the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles. In particular, we define different scenarios to produce random fluctuations on the water refractive index across the propagation path, and then examine the accuracy of various statistical distributions in terms of their goodness of fit to the experimental data. We also obtain the channel coherence time to address the average period of fading temporal variations. The scenarios under consideration cover a wide range of scintillation index from weak to strong turbulence. Moreover, the effects of beam-collimator at the transmitter side and aperture averaging lens at the receiver side are experimentally investigated. We show that the use of a transmitter beam-collimator and/or a receiver aperture averaging lens suits single-lobe distributions such that the generalized Gamma and exponential Weibull distributions can excellently match the histograms of the acquired data. Our experimental results further reveal that the channel coherence time is on the order of 10310^{-3} seconds and larger which implies to the slow fading turbulent channels

    Shadowed Fading in Indoor Off-Body Communications Channels: A Statistical Characterization using the κ − µ / Gamma Composite Fading Model

    Get PDF
    This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz. This is realized with the aid of the κ-μ/gamma composite fading model, which assumes that the transmitted signal undergoes κ-μ fading, which is subject to multiplicative shadowing. Based on this, the total power of the multipath components, including both the dominant and scattered components, is subject to non-negligible variations that follow the gamma distribution. For this model, we present an integral form of the probability density function (PDF) as well as important analytic expressions for the PDF, cumulative distribution function, moments, and moment generating function. In the case of indoor off-body communications, the corresponding measurements were carried out in the context of four explicit individual scenarios, namely: line of sight (LOS), non-LOS walking, rotational, and random movements. The measurements were repeated within three different indoor environments and considered three different hypothetical body worn node locations. With the aid of these results, the parameters for the κ-μ/gamma composite fading model were estimated and analyzed extensively. Interestingly, for the majority of the indoor environments and movement scenarios, the parameter estimates suggested that dominant signal components existed even when the direct signal path was obscured by the test subject's body. In addition, it is shown that the κ-μ/gamma composite fading model provides an adequate fit to the fading effects involved in off-body communications channels. Using the Kullback-Leibler divergence, we have also compared our results with another recently proposed shadowed fading model, namely, the κ-μ/lognormal LOS shadowed fading model. It was found that the κ-μ/gamma composite fading model provided a better fit for the majority of the scenarios considered in this paper

    Propagation Characterization of LEO/MEO Satellite Systems at 900-2100 MHz

    Get PDF
    This paper focuses on the propagation characterization of satellite communication systems in non-geostationary orbits at 900-2100MHz. An overview of available statistical propagation models for the mobile satellite communications channel is provided. Path loss equations for satellite communication systems in the range of 900-2100MHz for different environments and different probabilities of link closure are addressed. We also introduce a series of experiments being conducted to deepen understanding of these issues

    An Empirical Ultra Wideband Channel Model for Indoor Laboratory Environments

    Get PDF
    Channel measurement and modeling is an important issue when designing ultra wideband (UWB) communication systems. In this paper, the results of some UWB time-domain propagation measurements performed in modern laboratory (Lab) environments are presented. The Labs are equipped with many electronic and measurement devices which make them different from other indoor locations like office and residential environments. The measurements have been performed for both line of sight (LOS) and non-LOS (NLOS) scenarios. The measurement results are used to investigate large-scale channel characteristics and temporal dispersion parameters. The clustering Saleh- Valenzuela (S-V) channel impulse response (CIR) parameters are investigated based on the measurement data. The small-scale amplitude fading statistics are also studied in the environment. Then, an empirical model is presented for UWB signal transmission in the Lab environment based on the obtained results
    corecore