1,338 research outputs found

    Multiscale Transforms for Signals on Simplicial Complexes

    Full text link
    Our previous multiscale graph basis dictionaries/graph signal transforms -- Generalized Haar-Walsh Transform (GHWT); Hierarchical Graph Laplacian Eigen Transform (HGLET); Natural Graph Wavelet Packets (NGWPs); and their relatives -- were developed for analyzing data recorded on nodes of a given graph. In this article, we propose their generalization for analyzing data recorded on edges, faces (i.e., triangles), or more generally κ\kappa-dimensional simplices of a simplicial complex (e.g., a triangle mesh of a manifold). The key idea is to use the Hodge Laplacians and their variants for hierarchical partitioning of a set of κ\kappa-dimensional simplices in a given simplicial complex, and then build localized basis functions on these partitioned subsets. We demonstrate their usefulness for data representation on both illustrative synthetic examples and real-world simplicial complexes generated from a co-authorship/citation dataset and an ocean current/flow dataset.Comment: 19 Pages, Comments welcom

    Efficient Quantum Transforms

    Full text link
    Quantum mechanics requires the operation of quantum computers to be unitary, and thus makes it important to have general techniques for developing fast quantum algorithms for computing unitary transforms. A quantum routine for computing a generalized Kronecker product is given. Applications include re-development of the networks for computing the Walsh-Hadamard and the quantum Fourier transform. New networks for two wavelet transforms are given. Quantum computation of Fourier transforms for non-Abelian groups is defined. A slightly relaxed definition is shown to simplify the analysis and the networks that computes the transforms. Efficient networks for computing such transforms for a class of metacyclic groups are introduced. A novel network for computing a Fourier transform for a group used in quantum error-correction is also given.Comment: 30 pages, LaTeX2e, 7 figures include

    The Vector Valued Quartile Operator

    Full text link
    Certain vector-valued inequalities are shown to hold for a Walsh analog of the bilinear Hilbert transform. These extensions are phrased in terms of a recent notion of quartile type of a UMD (Unconditional Martingale Differences) Banach space X. Every known UMD Banach space has finite quartile type, and it was recently shown that the Walsh analog of Carleson's Theorem holds under a closely related assumption of finite tile type. For a Walsh model of the bilinear Hilbert transform however, the quartile type should be sufficiently close to that of a Hilbert space for our results to hold. A full set of inequalities is quantified in terms of quartile type.Comment: 32 pages, 5 figures, incorporates referee's report, to appear in Collect. Mat

    A note on parallel and pipeline computation of fast unitary transforms

    Get PDF
    The parallel and pipeline organization of fast unitary transform algorithms such as the Fast Fourier Transform are discussed. The efficiency is pointed out of a combined parallel-pipeline processor of a transform such as the Haar transform in which 2 to the n minus 1 power hardware butterflies generate a transform of order 2 to the n power every computation cycle

    "Rewiring" Filterbanks for Local Fourier Analysis: Theory and Practice

    Full text link
    This article describes a series of new results outlining equivalences between certain "rewirings" of filterbank system block diagrams, and the corresponding actions of convolution, modulation, and downsampling operators. This gives rise to a general framework of reverse-order and convolution subband structures in filterbank transforms, which we show to be well suited to the analysis of filterbank coefficients arising from subsampled or multiplexed signals. These results thus provide a means to understand time-localized aliasing and modulation properties of such signals and their subband representations--notions that are notably absent from the global viewpoint afforded by Fourier analysis. The utility of filterbank rewirings is demonstrated by the closed-form analysis of signals subject to degradations such as missing data, spatially or temporally multiplexed data acquisition, or signal-dependent noise, such as are often encountered in practical signal processing applications

    L_p- and S_{p,q}^rB-discrepancy of (order 2) digital nets

    Full text link
    Dick proved that all order 22 digital nets satisfy optimal upper bounds of the L2L_2-discrepancy. We give an alternative proof for this fact using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds of the Sp,qrBS_{p,q}^r B-discrepancy for a certain parameter range and enlarge that range for order 22 digitals nets. LpL_p-, Sp,qrFS_{p,q}^r F- and SprHS_p^r H-discrepancy is considered as well
    • …
    corecore