103 research outputs found

    Exactly solvable variable parametric Burgers type models

    Full text link
    Exactly solvable variable parametric Burgers type equations in one-dimension are introduced, and two different approaches for solving the corresponding initial value problems are given. The first one is using the relationship between the variable parametric models and their standard counterparts. The second approach is a direct linearization of the variable parametric Burgers model to a variable parametric parabolic model via a generalized Cole-Hopf transform. Eventually, the problem of finding analytic and exact solutions of the variable parametric models reduces to that of solving a corresponding second order linear ODE with time dependent coefficients. This makes our results applicable to a wide class of exactly solvable Burgers type equations related with the classical Sturm-Liouville problems for the orthogonal polynomials

    Aspects of the Noisy Burgers Equation

    Full text link
    The noisy Burgers equation describing for example the growth of an interface subject to noise is one of the simplest model governing an intrinsically nonequilibrium problem. In one dimension this equation is analyzed by means of the Martin-Siggia-Rose technique. In a canonical formulation the morphology and scaling behavior are accessed by a principle of least action in the weak noise limit. The growth morphology is characterized by a dilute gas of nonlinear soliton modes with gapless dispersion law with exponent z=3/2 and a superposed gas of diffusive modes with a gap. The scaling exponents and a heuristic expression for the scaling function follow from a spectral representation.Comment: 23 pages,LAMUPHYS LaTeX-file (Springer), 13 figures, and 1 table, to appear in the Proceedings of the XI Max Born Symposium on "Anomalous Diffusion: From Basics to Applications", May 20-24, 1998, Ladek Zdroj, Polan

    Integrable viscous conservation laws

    Get PDF
    We propose an extension of the Dubrovin-Zhang perturbative approach to the study of normal forms for non-Hamiltonian integrable scalar conservation laws. The explicit computation of the first few corrections leads to the conjecture that such normal forms are parameterized by one single functional parameter, named viscous central invariant. A constant valued viscous central invariant corresponds to the well-known Burgers hierarchy. The case of a linear viscous central invariant provides a viscous analog of the Camassa-Holm equation, that formerly appeared as a reduction of a two-component Hamiltonian integrable systems. We write explicitly the negative and positive hierarchy associated with this equation and prove the integrability showing that they can be mapped respectively into the heat hierarchy and its negative counterpart, named the Klein-Gordon hierarchy. A local well-posedness theorem for periodic initial data is also proven. We show how transport equations can be used to effectively construct asymptotic solutions via an extension of the quasi-Miura map that preserves the initial datum. The method is alternative to the method of the string equation for Hamiltonian conservation laws and naturally extends to the viscous case. Using these tools we derive the viscous analog of the Painlevé I2 equation that describes the universal behaviour of the solution at the critical point of gradient catastrophe

    Exactly solvab q-extended nonlinear classical and quantum models

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mathematics, Izmir, 2011Includes bibliographical references (leaves: 207-213)Text in English; Abstract: Turkish and Englishxii, 246 leavesIn the present thesis we study q-extended exactly solvable nonlinear classical and quantum models. In these models the derivative operator is replaced by q-derivative, in the form of finite difference dilatation operator. It requires introducing q-numbers instead of standard numbers, and q-calculus instead of standard calculus. We start with classical q-damped oscillator and q-difference heat equation. Exact solutions are constructed as q-Hermite and Kampe-de Feriet polynomials and Jackson q-exponential functions. By q-Cole-Hopf transformation we obtain q-nonlinear heat equation in the form of Burgers equation. IVP for this equation is solved in operator form and q-shock soliton solutions are found. Results are extended to linear q-Schrödinger equation and nonlinear q-Maddelung fluid. Motivated by physical applications, then we introduce the multiple q-calculus. In addition to non-symmetrical and symmetrical q-calculus it includes the new Fibonacci calculus, based on Binet-Fibonacci formula. We show that multiple q-calculus naturally appears in construction of Q-commutative q-binomial formula, generalizing all well-known formulas as Newton, Gauss, and noncommutative ones. As another application we study quantum two parametric deformations of harmonic oscillator and corresponding q-deformed quantum angular momentum. A new type of q-function of two variables is introduced as q-holomorphic function, satisfying q-Cauchy-Riemann equations. In spite of that q-holomorphic function is not analytic in the usual sense, it represents the so-called generalized analytic function. The q-traveling waves as solutions of q-wave equation are derived. To solve the q-BVP we introduce q-Bernoulli numbers, and their relation with zeros of q-Sine function

    Adomian decomposition method, nonlinear equations and spectral solutions of burgers equation

    Get PDF
    Tese de doutoramento. CiĂŞncias da Engenharia. 2006. Faculdade de Engenharia. Universidade do Porto, Instituto Superior TĂ©cnico. Universidade TĂ©cnica de Lisbo
    • …
    corecore