16,662 research outputs found

    Properties of stochastic Kronecker graphs

    Full text link
    The stochastic Kronecker graph model introduced by Leskovec et al. is a random graph with vertex set Z2n\mathbb Z_2^n, where two vertices uu and vv are connected with probability αu⋅vγ(1−u)⋅(1−v)βn−u⋅v−(1−u)⋅(1−v)\alpha^{{u}\cdot{v}}\gamma^{(1-{u})\cdot(1-{v})}\beta^{n-{u}\cdot{v}-(1-{u})\cdot(1-{v})} independently of the presence or absence of any other edge, for fixed parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. They have shown empirically that the degree sequence resembles a power law degree distribution. In this paper we show that the stochastic Kronecker graph a.a.s. does not feature a power law degree distribution for any parameters 0<α,β,γ<10<\alpha,\beta,\gamma<1. In addition, we analyze the number of subgraphs present in the stochastic Kronecker graph and study the typical neighborhood of any given vertex.Comment: 37 pages, 2 figure

    Offensive alliances in cubic graphs

    Full text link
    An offensive alliance in a graph Γ=(V,E)\Gamma=(V,E) is a set of vertices S⊂VS\subset V where for every vertex vv in its boundary it holds that the majority of vertices in vv's closed neighborhood are in SS. In the case of strong offensive alliance, strict majority is required. An alliance SS is called global if it affects every vertex in V\SV\backslash S, that is, SS is a dominating set of Γ\Gamma. The global offensive alliance number γo(Γ)\gamma_o(\Gamma) (respectively, global strong offensive alliance number γo^(Γ)\gamma_{\hat{o}}(\Gamma)) is the minimum cardinality of a global offensive (respectively, global strong offensive) alliance in Γ\Gamma. If Γ\Gamma has global independent offensive alliances, then the \emph{global independent offensive alliance number} γi(Γ)\gamma_i(\Gamma) is the minimum cardinality among all independent global offensive alliances of Γ\Gamma. In this paper we study mathematical properties of the global (strong) alliance number of cubic graphs. For instance, we show that for all connected cubic graph of order nn, 2n5≤γi(Γ)≤n2≤γo^(Γ)≤3n4≤γo^(L(Γ))=γo(L(Γ))≤n,\frac{2n}{5}\le \gamma_i(\Gamma)\le \frac{n}{2}\le \gamma_{\hat{o}}(\Gamma)\le \frac{3n}{4} \le \gamma_{\hat{o}}({\cal L}(\Gamma))=\gamma_{o}({\cal L}(\Gamma))\le n, where L(Γ){\cal L}(\Gamma) denotes the line graph of Γ\Gamma. All the above bounds are tight
    • …
    corecore