601 research outputs found

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Readings in the 'New Science': a selective annotated bilbiography

    Full text link
    Die vorliegende kommentierte Bibliographie will hauptsächlich Historikern eine Orientierungshilfe für die Literaturfülle zum Thema 'New Science' geben. Die knapp besprochenen Arbeiten sind nach folgenden Themenkomplexen gruppiert: Unentscheidbarkeit, Ungewißheit und Komplexität; Makrostrukturen: Systeme und die humane Dimension; Dynamische Systeme (Spieltheorie, Katastrophentheorie, Chaos, Fraktale Geometrie, Antizipatorische Systeme, Lebende Systeme); Computer (Informationstheorie, Kognitionswisssenschaft und Künstliche Intelligenz); Die Mikro- und die Makrodimensionen; Zeit; Kultur und Erkenntnistheorie. (pmb

    A Hierarchical, Fuzzy Inference Approach to Data Filtration and Feature Prioritization in the Connected Manufacturing Enterprise

    Get PDF
    The current big data landscape is one such that the technology and capability to capture and storage of data has preceded and outpaced the corresponding capability to analyze and interpret it. This has led naturally to the development of elegant and powerful algorithms for data mining, machine learning, and artificial intelligence to harness the potential of the big data environment. A competing reality, however, is that limitations exist in how and to what extent human beings can process complex information. The convergence of these realities is a tension between the technical sophistication or elegance of a solution and its transparency or interpretability by the human data scientist or decision maker. This dissertation, contextualized in the connected manufacturing enterprise, presents an original Fuzzy Approach to Feature Reduction and Prioritization (FAFRAP) approach that is designed to assist the data scientist in filtering and prioritizing data for inclusion in supervised machine learning models. A set of sequential filters reduces the initial set of independent variables, and a fuzzy inference system outputs a crisp numeric value associated with each feature to rank order and prioritize for inclusion in model training. Additionally, the fuzzy inference system outputs a descriptive label to assist in the interpretation of the feature’s usefulness with respect to the problem of interest. Model testing is performed using three publicly available datasets from an online machine learning data repository and later applied to a case study in electronic assembly manufacture. Consistency of model results is experimentally verified using Fisher’s Exact Test, and results of filtered models are compared to results obtained by the unfiltered sets of features using a proposed novel metric of performance-size ratio (PSR)

    Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1

    Get PDF
    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making

    HIERARCHICAL-GRANULARITY HOLONIC MODELLING

    Get PDF
    This thesis aims to introduce an agent-based system engineering approach, named Hierarchical-Granularity Holonic Modelling, to support intelligent information processing at multiple granularity levels. The focus is especially on complex hierarchical systems. Nowadays, due to ever growing complexity of information systems and processes, there is an increasing need of a simple self-modular computational model able to manage data and perform information granulation at different resolutions (i.e., both spatial and temporal). The current literature lacks to provide such a methodology. To cite a relevant example, the object-oriented paradigm is suitable for describing a system at a given representation level; notwithstanding, further design effort is needed if a more synthetical of more analytical view of the same system is required. In the literature, the agent paradigm represents a viable solution in complex systems modelling; in particular, Multi-Agent Systems have been applied with success in a countless variety of distributed intelligence settings. Current agent-oriented implementations however suffer from an apparent dichotomy between agents as intelligent entities and agents\u2019 structures as superimposed hierarchies of roles within a given organization. The agents\u2019 architectures are often rigid and require intense re-engineering when the underpinning ontology is updated to cast new design criteria. The latest stage in the evolution of modelling frameworks is represented by Holonic Systems, based on the notion of \u2018holon\u2019 and \u2018holarchy\u2019 (i.e., hierarchy of holons). A holon, just like an agent, is an intelligent entity able to interact with the environment and to take decisions to solve a specific problem. Contrarily to agent, holon has the noteworthy property of playing the role of a whole and a part at the same time. This reflects at the organizational level: holarchy functions first as autonomous wholes in supra-ordination to their parts, secondly as dependent parts in sub-ordination to controls on higher levels, and thirdly in coordination with their local environment. These ideas were originally devised by Arthur Koestler in 1967. Since then, Holonic Systems have gained more and more credit in various fields such as Biology, Ecology, Theory of Emergence and Intelligent Manufacturing. Notwithstanding, with respect to these disciplines, fewer works on Holonic Systems can be found in the general framework of Artificial and Computational Intelligence. Moreover, the distance between theoretic models and actual implementation is still wide open. In this thesis, starting from the Koestler\u2019s original idea, we devise a novel agent-inspired model that merges intelligence with the holonic structure at multiple hierarchical-granularity levels. This is made possible thanks to a rule-based knowledge recursive representation, which allows the holonic agent to carry out both operating and learning tasks in a hierarchy of granularity levels. The proposed model can be directly used in terms of hardware/software applications. This endows systems and software engineers with a modular and scalable approach when dealing with complex hierarchical systems. In order to support our claims, exemplar experiments of our proposal are shown and prospective implications are commented

    Weakly monotonic averaging with application to image processing

    Full text link

    Medialness and the Perception of Visual Art

    Get PDF
    In this article we explore the practical use of medialness informed by perception studies as a representation and processing layer for describing a class of works of visual art. Our focus is towards the description of 2D objects in visual art, such as found in drawings, paintings, calligraphy, graffiti writing, where approximate boundaries or lines delimit regions associated to recognizable objects or their constitutive parts. We motivate this exploration on the one hand by considering how ideas emerging from the visual arts, cartoon animation and general drawing practice point towards the likely importance of medialness in guiding the interaction of the traditionally trained artist with the artifact. On the other hand, we also consider recent studies and results in cognitive science which point in similar directions in emphasizing the likely importance of medialness, an extension of the abstract mathematical representation known as ‘medial axis’ or ‘Voronoi graphs’, as a core feature used by humans in perceiving shapes in static or dynamic scenarios.We illustrate the use of medialness in computations performed with finished artworks as well as artworks in the process of being created, modified, or evolved through iterations. Such computations may be used to guide an artificial arm in duplicating the human creative performance or used to study in greater depth the finished artworks. Our implementations represent a prototyping of such applications of computing to art analysis and creation and remain exploratory. Our method also provides a possible framework to compare similar artworks or to study iterations in the process of producing a final preferred depiction, as selected by the artist

    Agents for educational games and simulations

    Get PDF
    This book consists mainly of revised papers that were presented at the Agents for Educational Games and Simulation (AEGS) workshop held on May 2, 2011, as part of the Autonomous Agents and MultiAgent Systems (AAMAS) conference in Taipei, Taiwan. The 12 full papers presented were carefully reviewed and selected from various submissions. The papers are organized topical sections on middleware applications, dialogues and learning, adaption and convergence, and agent applications
    • …
    corecore