1,991 research outputs found

    Fuzzy Scalar Field Theory as a Multitrace Matrix Model

    Get PDF
    We develop an analytical approach to scalar field theory on the fuzzy sphere based on considering a perturbative expansion of the kinetic term. This expansion allows us to integrate out the angular degrees of freedom in the hermitian matrices encoding the scalar field. The remaining model depends only on the eigenvalues of the matrices and corresponds to a multitrace hermitian matrix model. Such a model can be solved by standard techniques as e.g. the saddle-point approximation. We evaluate the perturbative expansion up to second order and present the one-cut solution of the saddle-point approximation in the large N limit. We apply our approach to a model which has been proposed as an appropriate regularization of scalar field theory on the plane within the framework of fuzzy geometry.Comment: 1+25 pages, replaced with published version, minor improvement

    Large-small dualities between periodic collapsing/expanding branes and brane funnels

    Get PDF
    We consider space and time dependent fuzzy spheres S2pS^{2p} arising in D1D(2p+1)D1-D(2p+1) intersections in IIB string theory and collapsing D(2p)-branes in IIA string theory. In the case of S2S^2, where the periodic space and time-dependent solutions can be described by Jacobi elliptic functions, there is a duality of the form rr to 1r{1 \over r} which relates the space and time dependent solutions. This duality is related to complex multiplication properties of the Jacobi elliptic functions. For S4S^4 funnels, the description of the periodic space and time dependent solutions involves the Jacobi Inversion problem on a hyper-elliptic Riemann surface of genus 3. Special symmetries of the Riemann surface allow the reduction of the problem to one involving a product of genus one surfaces. The symmetries also allow a generalisation of the rr to 1r{1 \over r} duality. Some of these considerations extend to the case of the fuzzy S6S^6.Comment: Latex, 50 pages, 2 figures ; v2 : a systematic typographical error corrected + minor change

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure
    corecore