60 research outputs found

    The fractional chromatic number of triangle-free subcubic graphs

    Get PDF
    Heckman and Thomas conjectured that the fractional chromatic number of any triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami and Zhu and of Lu and Peng, we prove that the fractional chromatic number of any triangle-free subcubic graph is at most 32/11 (which is roughly 2.909)

    An upper bound on the fractional chromatic number of triangle-free subcubic graphs

    Full text link
    An (a:b)(a:b)-coloring of a graph GG is a function ff which maps the vertices of GG into bb-element subsets of some set of size aa in such a way that f(u)f(u) is disjoint from f(v)f(v) for every two adjacent vertices uu and vv in GG. The fractional chromatic number χf(G)\chi_f(G) is the infimum of a/ba/b over all pairs of positive integers a,ba,b such that GG has an (a:b)(a:b)-coloring. Heckman and Thomas conjectured that the fractional chromatic number of every triangle-free graph GG of maximum degree at most three is at most 2.8. Hatami and Zhu proved that χf(G)33/642.953\chi_f(G) \leq 3-3/64 \approx 2.953. Lu and Peng improved the bound to χf(G)33/432.930\chi_f(G) \leq 3-3/43 \approx 2.930. Recently, Ferguson, Kaiser and Kr\'{a}l' proved that χf(G)32/112.909\chi_f(G) \leq 32/11 \approx 2.909. In this paper, we prove that χf(G)43/152.867\chi_f(G) \leq 43/15 \approx 2.867

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    Fractional coloring of triangle-free planar graphs

    Get PDF
    We prove that every planar triangle-free graph on nn vertices has fractional chromatic number at most 31n+1/33-\frac{1}{n+1/3}

    Determination of Fractional Chromatic Numbers in the Operation of Adding Two Different Graphs: Penentuan Bilangan Kromatik Fraksional pada Operasi Penjumlahan Dua Graf berbeda

    Get PDF
    The development of graph theory has provided many new pieces of knowledge, one of them is graph color. Where the application is spread in various fields such as the coding index theory. Fractional coloring is multiple coloring at points with different colors where the adjoining point has a different color. The operation in the graph is known as the sum operation. Point coloring can be applied to graphs where the result of operations is from several special graphs.  In this case, the graph summation results of the path graph and the cycle graph will produce the same fractional chromatic number as the sum of the fractional chromatic numbers of each graph before it is operated.Perkembangan teori graf telah banyak memberikan masukan kepada ilmu yang baru, salah satunya adalah pewarnaan graf, dengan aplikasinya yang tersebar dalam berbagai bidang seperti pada teori indeks koding. Pewarnaan fraksional adalah pemberian warna ganda pada titik dengan warna yang berbeda dengan titik yang bertetangga memiliki warna yang berbeda. Dalam operasi-operasi pada graf dikenal adalah operasi penjumlahan. Pewarnaan titik dapat diterapkan pada graf yang merupakan hasil operasi dari beberapa graf khusus. Dalam hal ini graf hasil penjumlahan graf lintasan dan graf siklus akan menghasilkan bilangan kromatik fraksional yang sama dengan penjumlahan bilangan kromatik fraksional masing-masing graf sebelum dioperasikan

    Coloring, List Coloring, and Painting Squares of Graphs (and other related problems)

    Full text link
    We survey work on coloring, list coloring, and painting squares of graphs; in particular, we consider strong edge-coloring. We focus primarily on planar graphs and other sparse classes of graphs.Comment: 32 pages, 13 figures and tables, plus 195-entry bibliography, comments are welcome, published as a Dynamic Survey in Electronic Journal of Combinatoric

    Independent Sets near the Lower Bound in Bounded Degree Graphs

    Get PDF
    By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number at most Delta is Delta-colorable, and thus it has an independent set of size at least n/Delta. We give an approximate characterization of graphs with independence number close to this bound, and use it to show that the problem of deciding whether such a graph has an independent set of size at least n/Delta+k has a kernel of size O(k)

    Choosability of a weighted path and free-choosability of a cycle

    Full text link
    A graph GG with a list of colors L(v)L(v) and weight w(v)w(v) for each vertex vv is (L,w)(L,w)-colorable if one can choose a subset of w(v)w(v) colors from L(v)L(v) for each vertex vv, such that adjacent vertices receive disjoint color sets. In this paper, we give necessary and sufficient conditions for a weighted path to be (L,w)(L,w)-colorable for some list assignments LL. Furthermore, we solve the problem of the free-choosability of a cycle.Comment: 9 page
    corecore