1,150 research outputs found

    The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator

    Full text link
    We analyze a nonlocal diffusion operator having as special cases the fractional Laplacian and fractional differential operators that arise in several applications. In our analysis, a nonlocal vector calculus is exploited to define a weak formulation of the nonlocal problem. We demonstrate that, when sufficient conditions on certain kernel functions hold, the solution of the nonlocal equation converges to the solution of the fractional Laplacian equation on bounded domains as the nonlocal interactions become infinite. We also introduce a continuous Galerkin finite element discretization of the nonlocal weak formulation and we derive a priori error estimates. Through several numerical examples we illustrate the theoretical results and we show that by solving the nonlocal problem it is possible to obtain accurate approximations of the solutions of fractional differential equations circumventing the problem of treating infinite-volume constraints.Comment: 27 pages, 5 figure

    Numerical Methods for the Fractional Laplacian: a Finite Difference-quadrature Approach

    Full text link
    The fractional Laplacian (−Δ)α/2(-\Delta)^{\alpha/2} is a non-local operator which depends on the parameter α\alpha and recovers the usual Laplacian as α→2\alpha \to 2. A numerical method for the fractional Laplacian is proposed, based on the singular integral representation for the operator. The method combines finite difference with numerical quadrature, to obtain a discrete convolution operator with positive weights. The accuracy of the method is shown to be O(h3−α)O(h^{3-\alpha}). Convergence of the method is proven. The treatment of far field boundary conditions using an asymptotic approximation to the integral is used to obtain an accurate method. Numerical experiments on known exact solutions validate the predicted convergence rates. Computational examples include exponentially and algebraically decaying solution with varying regularity. The generalization to nonlinear equations involving the operator is discussed: the obstacle problem for the fractional Laplacian is computed.Comment: 29 pages, 9 figure
    • …
    corecore