6,541 research outputs found

    Current Implementation of the Flooding Time Synchronization Protocol in Wireless Sensor Networks

    Get PDF
    Time synchronization is an issue that affects data accuracy within wireless sensor networks (WSNs). This issue is due to the complex nature of the wireless medium and can be mitigated with accurate time synchronization. This research focuses on the Flooding Time Synchronization Protocol (FTSP) since it is considered as the gold standard for accuracy in WSNs. FTSP minimizes the synchronization error by executing an algorithm that creates a unified time for the network reporting micro-second accuracy. Most synchronization protocols use the FTSP implementation as a benchmark for comparison. The current and only FTSP implementation runs on the TinyOS platform and is fully available online on GitHub. However, this implementation contains flaws that make micro-second accuracy impossible. This study reports a complete FTSP implementation that achieves micro-second accuracy after applying modifications to the current implementation. The new implementation provides a new standard to be used by future researches as a benchmark

    Adaptive Synchronization of Robotic Sensor Networks

    Full text link
    The main focus of recent time synchronization research is developing power-efficient synchronization methods that meet pre-defined accuracy requirements. However, an aspect that has been often overlooked is the high dynamics of the network topology due to the mobility of the nodes. Employing existing flooding-based and peer-to-peer synchronization methods, are networked robots still be able to adapt themselves and self-adjust their logical clocks under mobile network dynamics? In this paper, we present the application and the evaluation of the existing synchronization methods on robotic sensor networks. We show through simulations that Adaptive Value Tracking synchronization is robust and efficient under mobility. Hence, deducing the time synchronization problem in robotic sensor networks into a dynamic value searching problem is preferable to existing synchronization methods in the literature.Comment: First International Workshop on Robotic Sensor Networks part of Cyber-Physical Systems Week, Berlin, Germany, 14 April 201

    A Beaconless Asymmetric Energy-Efficient Time Synchronization Scheme for Resource-Constrained Multi-Hop Wireless Sensor Networks

    Get PDF
    The ever-increasing number of WSN deployments based on a large number of battery-powered, low-cost sensor nodes, which are limited in their computing and power resources, puts the focus of WSN time synchronization research on three major aspects, i.e., accuracy, energy consumption and computational complexity. In the literature, the latter two aspects have not received much attention compared to the accuracy of WSN time synchronization. Especially in multi-hop WSNs, intermediate gateway nodes are overloaded with tasks for not only relaying messages but also a variety of computations for their offspring nodes as well as themselves. Therefore, not only minimizing the energy consumption but also lowering the computational complexity while maintaining the synchronization accuracy is crucial to the design of time synchronization schemes for resource-constrained sensor nodes. In this paper, focusing on the three aspects of WSN time synchronization, we introduce a framework of reverse asymmetric time synchronization for resource-constrained multi-hop WSNs and propose a beaconless energy-efficient time synchronization scheme based on reverse one-way message dissemination. Experimental results with a WSN testbed based on TelosB motes running TinyOS demonstrate that the proposed scheme conserves up to 95% energy consumption compared to the flooding time synchronization protocol while achieving microsecond-level synchronization accuracy.Comment: 12 pages, 16 figure

    On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks

    Get PDF
    Self organizing, wireless sensors networks are an emergent and challenging technology that is attracting large attention in the sensing and monitoring community. Impressive progress has been done in recent years even if we need to assume that an optimal protocol for every kind of sensor network applications can not exist. As a result it is necessary to optimize the protocol for certain scenarios. In many applications for instance latency is a crucial factor in addition to energy consumption. MERLIN performs its best in such WSNs where there is the need to reduce the latency while ensuring that energy consumption is kept to a minimum. By means of that, the low latency characteristic of MERLIN can be used as a trade off to extend node lifetimes. The performance in terms of energy consumption and latency is optimized by acting on the slot length. MERLIN is designed specifically to integrate routing, MAC and localization protocols together. Furthermore it can support data queries which is a typical application for WSNs. The MERLIN protocol eliminates the necessity to have any explicit handshake mechanism among nodes. Furthermore, the reliability is improved using multiple path message propagation in combination with an overhearing mechanism. The protocol divides the network into subsets where nodes are grouped in time zones. As a result MERLIN also shows a good scalability by utilizing an appropriate scheduling mechanism in combination with a contention period

    The Bus Goes Wireless: Routing-Free Data Collection with QoS Guarantees in Sensor Networks

    Get PDF
    Abstract—We present the low-power wireless bus (LWB), a new communication paradigm for QoS-aware data collection in lowpower sensor networks. The LWB maps all communication onto network floods by using Glossy, an efficient flooding architecture for wireless sensor networks. Therefore, unlike current solutions, the LWB requires no information of the network topology, and inherently supports networks with mobile nodes and multiple data sinks. A LWB prototype implemented in Contiki guarantees bounded end-to-end communication delay and duplicate-free, inorder packet delivery—key QoS requirements in many control and mission-critical applications. Experiments on two testbeds demonstrate that the LWB prototype outperforms state-of-theart data collection and link layer protocols, in terms of reliability and energy efficiency. For instance, we measure an average radio duty cycle of 1.69 % and an overall data yield of 99.97 % in a typical data collection scenario with 85 sensor nodes on Twist. I

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics
    • …
    corecore