17 research outputs found

    Study of the interaction with a virtual 3D environment displayed on a smartphone

    Get PDF
    Les environnements virtuels à 3D (EV 3D) sont de plus en plus utilisés dans différentes applications telles que la CAO, les jeux ou la téléopération. L'évolution des performances matérielles des Smartphones a conduit à l'introduction des applications 3D sur les appareils mobiles. En outre, les Smartphones offrent de nouvelles capacités bien au-delà de la communication vocale traditionnelle qui sont consentis par l'intégrité d'une grande variété de capteurs et par la connectivité via Internet. En conséquence, plusieurs intéressantes applications 3D peuvent être conçues en permettant aux capacités de l'appareil d'interagir dans un EV 3D. Sachant que les Smartphones ont de petits et aplatis écrans et que EV 3D est large, dense et contenant un grand nombre de cibles de tailles différentes, les appareils mobiles présentent certaines contraintes d'interaction dans l'EV 3D comme : la densité de l'environnement, la profondeur de cibles et l'occlusion. La tâche de sélection fait face à ces trois problèmes pour sélectionner une cible. De plus, la tâche de sélection peut être décomposée en trois sous-tâches : la Navigation, le Pointage et la Validation. En conséquence, les chercheurs dans un environnement virtuel 3D ont développé de nouvelles techniques et métaphores pour l'interaction en 3D afin d'améliorer l'utilisation des applications 3D sur les appareils mobiles, de maintenir la tâche de sélection et de faire face aux problèmes ou facteurs affectant la performance de sélection. En tenant compte de ces considérations, cette thèse expose un état de l'art des techniques de sélection existantes dans un EV 3D et des techniques de sélection sur Smartphone. Il expose les techniques de sélection dans un EV 3D structurées autour des trois sous-tâches de sélection: navigation, pointage et validation. En outre, il décrit les techniques de désambiguïsation permettant de sélectionner une cible parmi un ensemble d'objets présélectionnés. Ultérieurement, il expose certaines techniques d'interaction décrites dans la littérature et conçues pour être implémenter sur un Smartphone. Ces techniques sont divisées en deux groupes : techniques effectuant des tâches de sélection bidimensionnelle sur un Smartphone et techniques exécutant des tâches de sélection tridimensionnelle sur un Smartphone. Enfin, nous exposons les techniques qui utilisaient le Smartphone comme un périphérique de saisie. Ensuite, nous discuterons la problématique de sélection dans un EV 3D affichée sur un Smartphone. Il expose les trois problèmes identifiés de sélection : la densité de l'environnement, la profondeur des cibles et l'occlusion. Ensuite, il établit l'amélioration offerte par chaque technique existante pour la résolution des problèmes de sélection. Il analyse les atouts proposés par les différentes techniques, la manière dont ils éliminent les problèmes, leurs avantages et leurs inconvénients. En outre, il illustre la classification des techniques de sélection pour un EV 3D en fonction des trois problèmes discutés (densité, profondeur et occlusion) affectant les performances de sélection dans un environnement dense à 3D. Hormis pour les jeux vidéo, l'utilisation d'environnement virtuel 3D sur Smartphone n'est pas encore démocratisée. Ceci est dû au manque de techniques d'interaction proposées pour interagir avec un dense EV 3D composé de nombreux objets proches les uns des autres et affichés sur un petit écran aplati et les problèmes de sélection pour afficher l' EV 3D sur un petit écran plutôt sur un grand écran. En conséquence, cette thèse se concentre sur la proposition et la description du fruit de cette étude : la technique d'interaction DichotoZoom. Elle compare et évalue la technique proposée à la technique de circulation suggérée par la littérature. L'analyse comparative montre l'efficacité de la technique DichotoZoom par rapport à sa contrepartie. Ensuite, DichotoZoom a été évalué selon les différentes modalités d'interaction disponibles sur les Smartphones. Cette évaluation montre la performance de la technique de sélection proposée basée sur les quatre modalités d'interaction suivantes : utilisation de boutons physiques ou sous forme de composants graphiques, utilisation d'interactions gestuelles via l'écran tactile ou le déplacement de l'appareil lui-même. Enfin, cette thèse énumère nos contributions dans le domaine des techniques d'interaction 3D utilisées dans un environnement virtuel 3D dense affiché sur de petits écrans et propose des travaux futurs.3D Virtual Environments (3D VE) are more and more used in different applications such as CAD, games, or teleoperation. Due to the improvement of smartphones hardware performance, 3D applications were also introduced to mobile devices. In addition, smartphones provide new computing capabilities far beyond the traditional voice communication. They are permitted by the variety of built-in sensors and the internet connectivity. In consequence, interesting 3D applications can be designed by enabling the device capabilities to interact in a 3D VE. Due to the fact that smartphones have small and flat screens and that a 3D VE is wide and dense with a large number of targets of various sizes, mobile devices present some constraints in interacting on the 3D VE like: the environment density, the depth of targets and the occlusion. The selection task faces these three problems to select a target. In addition, the selection task can be decomposed into three subtasks: Navigation, Pointing and Validation. In consequence, researchers in 3D virtual environment have developed new techniques and metaphors for 3D interaction to improve 3D application usability on mobile devices, to support the selection task and to face the problems or factors affecting selection performance. In light of these considerations, this thesis exposes a state of the art of the existing selection techniques in 3D VE and the selection techniques on smartphones. It exposes the selection techniques in 3D VE structured around the selection subtasks: navigation, pointing and validation. Moreover, it describes disambiguation techniques providing the selection of a target from a set of pre-selected objects. Afterward, it exposes some interaction techniques described in literature and designed for implementation on Smartphone. These techniques are divided into two groups: techniques performing two-dimensional selection tasks on smartphones, and techniques performing three-dimensional selection tasks on smartphones. Finally, we expose techniques that used the smartphone as an input device. Then, we will discuss the problematic of selecting in 3D VE displayed on a Smartphone. It exposes the three identified selection problems: the environment density, the depth of targets and the occlusion. Afterward, it establishes the enhancement offered by each existing technique in solving the selection problems. It analysis the assets proposed by different techniques, the way they eliminates the problems, their advantages and their inconvenient. Furthermore, it illustrates the classification of the selection techniques for 3D VE according to the three discussed problems (density, depth and occlusion) affecting the selection performance in a dense 3D VE. Except for video games, the use of 3D virtual environment (3D VE) on Smartphone has not yet been popularized. This is due to the lack of interaction techniques to interact with a dense 3D VE composed of many objects close to each other and displayed on a small and flat screen and the selection problems to display the 3D VE on a small screen rather on a large screen. Accordingly, this thesis focuses on defining and describing the fruit of this study: DichotoZoom interaction technique. It compares and evaluates the proposed technique to the Circulation technique, suggested by the literature. The comparative analysis shows the effectiveness of DichotoZoom technique compared to its counterpart. Then, DichotoZoom was evaluated in different modalities of interaction available on Smartphones. It reports on the performance of the proposed selection technique based on the following four interaction modalities: using physical buttons, using graphical buttons, using gestural interactions via touchscreen or moving the device itself. Finally, this thesis lists our contributions to the field of 3D interaction techniques used in a dense 3D virtual environment displayed on small screens and proposes some future works

    The Murray State News, May 15, 1968

    Get PDF

    Calculating Corrections in F-Theory from Refined BPS Invariants and Backreacted Geometries

    Get PDF
    This thesis presents various corrections to F-theory compactifications which rely on the computation of refined Bogomol'nyi-Prasad-Sommerfield (BPS) invariants and the analysis of backreacted geometries. Detailed information about rigid supersymmetric theories in five dimensions is contained in an index counting refined BPS invariants. These BPS states fall into representations of SU(2) x SU(2), the little group in five dimensions, which has an induced action on the cohomology of the moduli space of stable pairs. In the first part of this thesis, we present the computation of refined BPS state multi-plicities associated to M-theory compactifications on local Calabi-Yau manifolds whose base is given by a del Pezzo or half K3 surface. For geometries with a toric realization we use an algorithm which is based on the Weierstrass normal form of the mirror geometry. In addition we use the refined holomorphic anomaly equation and the gap condition at the conifold locus in the moduli space in order to perform the direct integration and to fix the holomorphic ambiguity. In a second approach, we use the refined Gottsche formula and the refined modular anomaly equation that govern the (refined) genus expansion of the free energy of the half K3 surface. By this procedure, we compute the refined BPS invariants of the half K3 from which the results of the remaining del Pezzo surfaces are obtained by flop transitions and blow-downs. These calculations also make use of the high symmetry of the del Pezzo surfaces whose homology lattice contains the root lattice of exceptional Lie algebras. In cases where both approaches are applicable, we successfully check the compatibility of these two methods. In the second part of this thesis, we apply the results obtained from the calculation of the refined invariants of the del Pezzo respectively the half K3 surfaces to count non-perturbative objects in F-theory. The first application is given by BPS states of the E-String which are counted in the dual F-theory compactification. Using the refined BPS invariants we can count these states and explain their space-time spin content. In addition, we explain that they fall into representations of E8 which can be explicitly determined. The second application is given by a proposal how to count [p,q]-strings within F-theory which is based on the D3 probe-brane picture and the dual Seiberg-Witten description. As a third contribution to F-theory which is independent of the results obtained in the first part, we consider the backreaction of G4-flux onto the geometry of a local model of a Calabi-Yau fourfold geometry. This induces a non-trivial warp-factor and modifies the Kaluza-Klein reduction ansatz. Taking this into account we demonstrate how corrections to the 7-brane gauge coupling function can be computed within F-theory

    Space—A Virtual Frontier: How to Design and Evaluate a Virtual Reality Experience of the Overview Effect

    Get PDF
    A select small group of people have an amazing opportunity to see the Earth from a unique perspective—from space. The effect this experience has on an individual has been described as extraordinary and profound, consisting of a cognitive shift in worldview that leads to a deeper understanding of the fragility and vulnerability of our planet, and an increased feeling of connectedness. This experience, termed the “Overview Effect,” has been reported by many space-travelers. Its key outcome—an enhanced feeling of interconnectedness—contributes to both one’s well-being and the sense of responsibility for the Earth. If this profoundly positive experience could be made accessible to more people than just space-travelers, this might ultimately contribute to a healthier and more caring society, where more individuals deeply feel the interconnection of all living beings and responsibility for our collective future. Given virtual reality (VR) technology’s potential to induce experiences affecting an immersant in a similar way as a real experience, we see an opportunity to leverage this technology to attempt to elicit the Overview Effect as a virtual experience. Through a virtual installation, the experience could be made accessible to people around the world, and for researchers to study this otherwise rare phenomenon. This article builds the case for VR as a tool for inducing and studying the Overview Effect. It reviews the psychological research on the Overview Effect and awe, and proposes guidelines for: (1) the design of VR experiences to elicit an Overview Effect and (2) evaluation methods for assessing if, or to what degree, the experience was achieved. Finally, we discuss existing implementations of the Overview Effect in VR. Thus, we are making an applied contribution in the form of design guidelines, and contributions to knowledge in the form of a review of research related to the Overview Effect. We invite researchers and VR creators to utilize and expand on the guidelines proposed in this paper to design transformative VR experiences that induce positive change, and promote a feeling of connectedness and care for each other, and our Spaceship Earth

    New Mexico State Record, 01-23-1920

    Get PDF
    https://digitalrepository.unm.edu/nm_state_record_news/1184/thumbnail.jp

    Annual reports of the town officers of Hinsdale, N.H. for the year ending December 31, 1967.

    Get PDF
    This is an annual report containing vital statistics for a town/city in the state of New Hampshire

    Designing a Sensor-Based Wearable Computing System for Custom Hand Gesture Recognition Using Machine Learning

    Get PDF
    This thesis investigates how assistive technology can be made to facilitate communication for people that are unable to or have difficulty communicating via vocal speech, and how this technology can be made more universal and compatible with the many different types of sign language that they use. Through this research, a fully customisable and stand-alone wearable device was developed, that employs machine learning techniques to recognise individual hand gestures and translate them into text, images and speech. The device can recognise and translate custom hand gestures by training a personal classifier for each user, relying on a small training sample size, that works online on an embedded system or mobile device, with a classification accuracy rate of up to 99%. This was achieved through a series of iterative case studies, with user testing carried out by real users in their every day environments and in public spaces

    Multimodal Perception of Auditoria: Influence of Auditory and Visual Factors on Preference

    Get PDF
    The enjoyment of a music performance is a multisensory experience, of which auditory and visual senses play the most important parts in conveying the content of the concerts. This thesis investigates the effects of and relationships between various auditory and visual factors on subjective preference, with an emphasis on the rarely-studied visual preference. The thesis includes four subjective evaluation experiments (all using head-mounted virtual reality display and headphones audio playback, 30 to 33 volunteers each) and one online survey (153 responses). The experimental method of virtual reality display and digital audio playback allows each factor to be individually controlled and tested, which was never possible with traditional methods, but still provides a reasonable sense of space and realism. Auditory factors considered in the thesis include sound pressure level and reverberation time, while visual factors include interior design colour, distance from the stage, lateral angle from the concert hall mid-plane, vertical angle from stage level, and visual obstruction. The effects of factors were studied using orthogonal control, and verified with realistic models and alternative methods with larger sample. Results include a prediction model that accounts for the effects and relationships of all investigated factors, and a practical tool for design/evaluation of auditorium seating layout

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    Computer Science & Technology Series : XXI Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC’15 was the 21thCongress in the CACIC series. It was organized by the School of Technology at the UNNOBA (North-West of Buenos Aires National University) in Junín, Buenos Aires. The Congress included 13 Workshops with 131 accepted papers, 4 Conferences, 2 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 6 courses. CACIC 2015 was organized following the traditional Congress format, with 13 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of 3-5 chairs of different Universities. The call for papers attracted a total of 202 submissions. An average of 2.5 review reports werecollected for each paper, for a grand total of 495 review reports that involved about 191 different reviewers. A total of 131 full papers, involving 404 authors and 75 Universities, were accepted and 24 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI
    corecore