2,188 research outputs found

    The finite harmonic oscillator and its associated sequences

    Full text link
    A system of functions (signals) on the finite line, called the oscillator system, is described and studied. Applications of this system for discrete radar and digital communication theory are explained. Keywords: Weil representation, commutative subgroups, eigenfunctions, random behavior, deterministic constructionComment: Published in the Proceedings of the National Academy of Sciences of the United States of America (Communicated by Joseph Bernstein, Tel Aviv University, Tel Aviv, Israel

    Accurate detection of moving targets via random sensor arrays and Kerdock codes

    Full text link
    The detection and parameter estimation of moving targets is one of the most important tasks in radar. Arrays of randomly distributed antennas have been popular for this purpose for about half a century. Yet, surprisingly little rigorous mathematical theory exists for random arrays that addresses fundamental question such as how many targets can be recovered, at what resolution, at which noise level, and with which algorithm. In a different line of research in radar, mathematicians and engineers have invested significant effort into the design of radar transmission waveforms which satisfy various desirable properties. In this paper we bring these two seemingly unrelated areas together. Using tools from compressive sensing we derive a theoretical framework for the recovery of targets in the azimuth-range-Doppler domain via random antennas arrays. In one manifestation of our theory we use Kerdock codes as transmission waveforms and exploit some of their peculiar properties in our analysis. Our paper provides two main contributions: (i) We derive the first rigorous mathematical theory for the detection of moving targets using random sensor arrays. (ii) The transmitted waveforms satisfy a variety of properties that are very desirable and important from a practical viewpoint. Thus our approach does not just lead to useful theoretical insights, but is also of practical importance. Various extensions of our results are derived and numerical simulations confirming our theory are presented

    Incoherent dictionaries and the statistical restricted isometry property

    Full text link
    In this article we present a statistical version of the Candes-Tao restricted isometry property (SRIP for short) which holds in general for any incoherent dictionary which is a disjoint union of orthonormal bases. In addition, under appropriate normalization, the eigenvalues of the associated Gram matrix fluctuate around 1 according to the Wigner semicircle distribution. The result is then applied to various dictionaries that arise naturally in the setting of finite harmonic analysis, giving, in particular, a better understanding on a remark of Applebaum-Howard-Searle-Calderbank concerning RIP for the Heisenberg dictionary of chirp like functions.Comment: Key words: Incoherent dictionaries, statistical version of Candes - Tao RIP, Semi-Circle law, deterministic constructions, Heisenberg-Weil representatio

    Delay-Doppler Channel Estimation with Almost Linear Complexity

    Full text link
    A fundamental task in wireless communication is Channel Estimation: Compute the channel parameters a signal undergoes while traveling from a transmitter to a receiver. In the case of delay-Doppler channel, a widely used method is the Matched Filter algorithm. It uses a pseudo-random sequence of length N, and, in case of non-trivial relative velocity between transmitter and receiver, its computational complexity is O(N^{2}log(N)). In this paper we introduce a novel approach of designing sequences that allow faster channel estimation. Using group representation techniques we construct sequences, which enable us to introduce a new algorithm, called the flag method, that significantly improves the matched filter algorithm. The flag method finds the channel parameters in O(mNlog(N)) operations, for channel of sparsity m. We discuss applications of the flag method to GPS, radar system, and mobile communication as well.Comment: 11 page

    Sub-Nyquist Sampling: Bridging Theory and Practice

    Full text link
    Sampling theory encompasses all aspects related to the conversion of continuous-time signals to discrete streams of numbers. The famous Shannon-Nyquist theorem has become a landmark in the development of digital signal processing. In modern applications, an increasingly number of functions is being pushed forward to sophisticated software algorithms, leaving only those delicate finely-tuned tasks for the circuit level. In this paper, we review sampling strategies which target reduction of the ADC rate below Nyquist. Our survey covers classic works from the early 50's of the previous century through recent publications from the past several years. The prime focus is bridging theory and practice, that is to pinpoint the potential of sub-Nyquist strategies to emerge from the math to the hardware. In that spirit, we integrate contemporary theoretical viewpoints, which study signal modeling in a union of subspaces, together with a taste of practical aspects, namely how the avant-garde modalities boil down to concrete signal processing systems. Our hope is that this presentation style will attract the interest of both researchers and engineers in the hope of promoting the sub-Nyquist premise into practical applications, and encouraging further research into this exciting new frontier.Comment: 48 pages, 18 figures, to appear in IEEE Signal Processing Magazin
    • …
    corecore