5,974 research outputs found

    Oblivious remote state preparation

    Get PDF
    We consider remote state preparation protocols for a set of pure states whose projectors form a basis for operators acting on the input Hilbert space. If a protocol (1) uses only forward communication and entanglement, (2) deterministically prepares an exact copy of the state, and (3) does so obliviously -- without leaking further information about the state to the receiver -- then the protocol can be modified to require from the sender only a single specimen of the state. Furthermore, the original protocol and the modified protocol use the same amount of classical communication. Thus, under the three conditions stated, remote state preparation requires at least as much classical communication as teleportation, as Lo has conjectured [PRA 62 (2000) 012313], which is twice the expected classical communication cost of some existing nonoblivious protocols

    Faithful remote state preparation using finite classical bits and a non-maximally entangled state

    Full text link
    We present many ensembles of states that can be remotely prepared by using minimum classical bits from Alice to Bob and their previously shared entangled state and prove that we have found all the ensembles in two-dimensional case. Furthermore we show that any pure quantum state can be remotely and faithfully prepared by using finite classical bits from Alice to Bob and their previously shared nonmaximally entangled state though no faithful quantum teleportation protocols can be achieved by using a nonmaximally entangled state.Comment: 6 page

    Remote State Preparation

    Full text link
    Quantum teleportation uses prior entanglement and forward classical communication to transmit one instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender knows classically what state is to be transmitted. We show that the asymptotic classical communication cost of RSP is one bit per qubit - half that of teleportation - and becomes even less when transmitting part of a known entangled state. We explore the tradeoff between entanglement and classical communication required for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and discusses relation to work of Devetak and Berger (quant-ph/0102123); v4 improves low-entanglement protocols without back communication to perform as well as low-entanglement protocols with back communication; v5 (journal version) has a few small change

    Generalized Remote Preparation of Arbitrary mm-qubit Entangled States via Genuine Entanglements

    Get PDF
    Herein, we present a feasible, general protocol for quantum communication within a network via generalized remote preparation of an arbitrary mm-qubit entangled state designed with genuine tripartite Greenberger--Horne--Zeilinger-type entangled resources. During the implementations, we construct novel collective unitary operations; these operations are tasked with performing the necessary phase transfers during remote state preparations. We have distilled our implementation methods into a five-step procedure, which can be used to faithfully recover the desired state during transfer. Compared to previous existing schemes, our methodology features a greatly increased success probability. After the consumption of auxiliary qubits and the performance of collective unitary operations, the probability of successful state transfer is increased four-fold and eight-fold for arbitrary two- and three-qubit entanglements when compared to other methods within the literature, respectively. We conclude this paper with a discussion of the presented scheme for state preparation, including: success probabilities, reducibility and generalizability.Comment: 16 pages, 3 figures, 3 tables, Accepted to Entrop

    Optimal superdense coding of entangled states

    Get PDF
    We present a one-shot method for preparing pure entangled states between a sender and a receiver at a minimal cost of entanglement and quantum communication. In the case of preparing unentangled states, an earlier paper showed that a 2n-qubit quantum state could be communicated to a receiver by physically transmitting only n+o(n) qubits in addition to consuming n ebits of entanglement and some shared randomness. When the states to be prepared are entangled, we find that there is a reduction in the number of qubits that need to be transmitted, interpolating between no communication at all for maximally entangled states and the earlier two-for-one result of the unentangled case, all without the use of any shared randomness. We also present two applications of our result: a direct proof of the achievability of the optimal superdense coding protocol for entangled states produced by a memoryless source, and a demonstration that the quantum identification capacity of an ebit is two qubits.Comment: Final Version. Several technical issues clarifie

    Resources required for exact remote state preparation

    Get PDF
    It has been shown [M.-Y. Ye, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 69, 022310 (2004)] that it is possible to perform exactly faithful remote state preparation using finite classical communication and any entangled state with maximal Schmidt number. Here we give an explicit procedure for performing this remote state preparation. We show that the classical communication required for this scheme is close to optimal for remote state preparation schemes of this type. In addition we prove that it is necessary that the resource state have maximal Schmidt number.Comment: 7 pages, 1 figur
    corecore