8,808 research outputs found

    NĂ€gemistaju automaatsete protsesside eksperimentaalne uurimine

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneVĂ€itekiri keskendub nĂ€gemistaju protsesside eksperimentaalsele uurimisele, mis on suuremal vĂ”i vĂ€hemal mÀÀral automaatsed. Uurimistöös on kasutatud erinevaid eksperimentaalseid katseparadigmasid ja katsestiimuleid ning nii kĂ€itumuslikke- kui ka ajukuvamismeetodeid. Esimesed kolm empiirilist uurimust kĂ€sitlevad liikumisinformatsiooni töötlust, mis on evolutsiooni kĂ€igus kujunenud ĂŒheks olulisemaks baasprotsessiks nĂ€gemistajus. Esmalt huvitas meid, kuidas avastatakse liikuva objekti suunamuutusi, kui samal ajal toimub ka taustal liikumine (Uurimus I). NĂ€gemistaju uurijad on pikka aega arvanud, et liikumist arvutatakse alati mĂ”ne vĂ€lise objekti vĂ”i tausta suhtes. Meie uurimistulemused ei kinnitanud taolise suhtelise liikumise printsiibi paikapidavust ning toetavad pigem seisukohta, et eesmĂ€rkobjekti liikumisinformatsiooni töötlus on automaatne protsess, mis tuvastab silma pĂ”hjas toimuvaid nihkeid, ja taustal toimuv seda eriti ei mĂ”juta. Teise uurimuse tulemused (Uurimus II) nĂ€itasid, et nĂ€gemissĂŒsteem töötleb vĂ€ga edukalt ka seda liikumisinformatsiooni, millele vaatleja teadlikult tĂ€helepanu ei pööra. See tĂ€hendab, et samal ajal, kui inimene on mĂ”ne tĂ€helepanu hĂ”lmava tegevusega ametis, suudab tema aju taustal toimuvaid sĂŒndmusi automaatselt registreerida. IgapĂ€evaselt on inimese nĂ€gemisvĂ€ljas alati palju erinevaid objekte, millel on erinevad omadused, mistĂ”ttu jĂ€rgmiseks huvitas meid (Uurimus III), kuidas ĂŒhe tunnuse (antud juhul vĂ€rvimuutuse) töötlemist mĂ”jutab mĂ”ne teise tunnusega toimuv (antud juhul liikumiskiiruse) muutus. NĂ€itasime, et objekti liikumine parandas sama objekti vĂ€rvimuutuse avastamist, mis viitab, et nende kahe omaduse töötlemine ajus ei ole pĂ€ris eraldiseisev protsess. Samuti tĂ€hendab taoline tulemus, et hoolimata ĂŒhele tunnusele keskendumisest ei suuda inimene ignoreerida teist tĂ€helepanu tĂ”mbavat tunnust (liikumine), mis viitab taas kord automaatsetele töötlusprotsessidele. Neljas uurimus keskendus emotsionaalsete nĂ€ovĂ€ljenduste töötlusele, kuna need kannavad keskkonnas hakkamasaamiseks vajalikke sotsiaalseid signaale, mistĂ”ttu on alust arvata, et nende töötlus on kujunenud suuresti automaatseks protsessiks. NĂ€itasime, et emotsiooni vĂ€ljendavaid nĂ€gusid avastati kiiremini ja kergemini kui neutraalse ilmega nĂ€gusid ning et vihane nĂ€gu tĂ”mbas rohkem tĂ€helepanu kui rÔÔmus (Uurimus IV). VĂ€itekirja viimane osa puudutab visuaalset lahknevusnegatiivsust (ingl Visual Mismatch Negativity ehk vMMN), mis nĂ€itab aju vĂ”imet avastada automaatselt erinevusi enda loodud mudelist ĂŒmbritseva keskkonna kohta. Selle automaatse erinevuse avastamise mehhanismi uurimisse andsid oma panuse nii Uurimus II kui Uurimus IV, mis mĂ”lemad pakuvad vĂ€lja tĂ”endusi vMMN tekkimise kohta eri tingimustel ja katseparadigmades ning ka vajalikke metodoloogilisi tĂ€iendusi. Uurimus V on esimene kogu siiani ilmunud temaatilist teadustööd hĂ”lmav ĂŒlevaateartikkel ja metaanalĂŒĂŒs visuaalsest lahknevusnegatiivsusest psĂŒhhiaatriliste ja neuroloogiliste haiguste korral, mis panustab oluliselt visuaalse lahknevusnegatiivsuse valdkonna arengusse.The research presented and discussed in the thesis is an experimental exploration of processes in visual perception, which all display a considerable amount of automaticity. These processes are targeted from different angles using different experimental paradigms and stimuli, and by measuring both behavioural and brain responses. In the first three empirical studies, the focus is on motion detection that is regarded one of the most basic processes shaped by evolution. Study I investigated how motion information of an object is processed in the presence of background motion. Although it is widely believed that no motion can be perceived without establishing a frame of reference with other objects or motion on the background, our results found no support for relative motion principle. This finding speaks in favour of a simple and automatic process of detecting motion, which is largely insensitive to the surrounding context. Study II shows that the visual system is built to automatically process motion information that is outside of our attentional focus. This means that even if we are concentrating on some task, our brain constantly monitors the surrounding environment. Study III addressed the question of what happens when multiple stimulus qualities (motion and colour) are present and varied, which is the everyday reality of our visual input. We showed that velocity facilitated the detection of colour changes, which suggests that processing motion and colour is not entirely isolated. These results also indicate that it is hard to ignore motion information, and processing it is rather automatically initiated. The fourth empirical study focusses on another example of visual input that is processed in a rather automatic way and carries high survival value – emotional expressions. In Study IV, participants detected emotional facial expressions faster and more easily compared with neutral facial expressions, with a tendency towards more automatic attention to angry faces. In addition, we investigated the emergence of visual mismatch negativity (vMMN) that is one of the most objective and efficient methods for analysing automatic processes in the brain. Study II and Study IV proposed several methodological gains for registering this automatic change-detection mechanism. Study V is an important contribution to the vMMN research field as it is the first comprehensive review and meta-analysis of the vMMN studies in psychiatric and neurological disorders

    Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates.

    Get PDF
    Feature selection has been extensively studied in the context of goal-directed behavior, where it is heavily driven by top-down factors. A more primitive version of this function is the detection of bottom-up changes in stimulus features in the environment. Indeed, the nervous system is tuned to detect fast-rising, intense stimuli that are likely to reflect threats, such as nociceptive somatosensory stimuli. These stimuli elicit large brain potentials maximal at the scalp vertex. When elicited by nociceptive laser stimuli, these responses are labeled laser-evoked potentials (LEPs). Although it has been shown that changes in stimulus modality and increases in stimulus intensity evoke large LEPs, it has yet to be determined whether stimulus displacements affect the amplitude of the main LEP waves (N1, N2, and P2). Here, in three experiments, we identified a set of rules that the human nervous system obeys to identify changes in the spatial location of a nociceptive stimulus. We showed that the N2 wave is sensitive to: (1) large displacements between consecutive stimuli in egocentric, but not somatotopic coordinates; and (2) displacements that entail a behaviorally relevant change in the stimulus location. These findings indicate that nociceptive-evoked vertex potentials are sensitive to behaviorally relevant changes in the location of a nociceptive stimulus with respect to the body, and that the hand is a particularly behaviorally important site

    Attentional threat biases and their role in anxiety: A neurophysiological perspective

    Get PDF
    One of the most important function of selective attention is the efficient and accurate detection and identification of cues associated with threat. However, in pathological anxiety, this attentional mechanism seems to be dysfunctional, which leads to an exaggeration of threat processing and significant functional impairment. This attentional threat bias (ATB) has been proposed as a key mechanism in the etiology and maintenance of anxiety disorders. Recently, evidence has accumulated that the behavioral assessment of ATB by means of reaction times is compromised by conceptual and methodological problems. In this review paper we argue that a brain-based assessment of ATB, which includes different mechanistic aspects of biased attention, may provide neuromechanistic knowledge regarding the etiology and maintenance of anxiety, and potentially start identifying different targets for effective treatment. We summarize examples for such an approach, highlighting the strengths of electrophysiological measurements, which include the sensitivity to time dynamics, specificity to specific neurocomputational mechanisms, and the continuous/dimensional nature of the resulting variables. These desirable properties are a prerequisite for developing trans-diagnostic biomarkers of attentional bias, and hence may inform individually tailored treatment approaches

    The two-process theory of face processing: modifications based on two decades of data from infants and adults

    Get PDF
    Johnson and Morton (1991) used Gabriel Horn’s work on the filial imprinting model to inspire a two-process theory of the development of face processing in humans. In this paper we review evidence accrued over the past two decades from infants and adults, and from other primates, that informs this two-process model. While work with newborns and infants has been broadly consistent with predictions from the model, further refinements and questions have been raised. With regard to adults, we discuss more recent evidence on the extension of the model to eye contact detection, and to subcortical face processing, reviewing functional imaging and patient studies. We conclude with discussion of outstanding caveats and future directions of research in this field

    Social Anxiety: Understanding the Attentional Bias to Threat

    Get PDF
    Biased attention toward threatening facial expressions is an important maintaining and possibly aetiological factor for social anxiety. However, little is known about the underlying mechanisms. To develop our understanding of this threat bias, the relative contributions of top-down attention, bottom-up attention, and selection history were differentiated across four studies. In Study One, the roles of top-down attention, bottom-up attention, and selection history were tested in an unselected sample using a modification of the dot-probe task, in which participants were cued to attend to a happy or angry face on each trial. Results showed that attentional orienting toward facial expressions was not exclusively driven by bottom-up attentional capture as some previous theories suggest; but instead, participants could shift attention toward emotional faces in a top-down manner. This effect was eliminated when the faces were inverted, demonstrating that top-down attention relies on holistic face processing. Study One found no evidence of selection history (i.e., no improvement on repeated trials or blocks of trials in which the task was to orient to the same expression). Study Two tested whether this ability to use top-down attention to orient to emotional faces is impaired for individuals with social anxiety. Using the same task as Study One, Study Two found that participants with higher levels of social anxiety were selectively impaired in attentional shifting toward a cued happy face when it was paired with an angry face, but not when paired with a neutral face. These results indicate that high social anxiety is associated with deficits in top-down control of attention, which are selectively revealed in the presence of non-task-relevant threat. The results of Study Two could be explained by bottom-up attention to threat or a top-down set for threat that could not be overcome by the instruction to attend to a happy face. To test this, Study Three utilised a modified dot-probe task in which participants were presented with an upright face paired with an inverted face (displaying a disgust or neutral expression) and engagement with and disengagement of attention from threatening faces were measured separately. The task was performed under no, low, and high working-memory load conditions. Since working-memory load draws on the same resources as top-down attention, interference from increasing working-memory load on attentional orienting would point to a role for top-down attention. Social anxiety was not associated with delayed disengagement from threat. However, surprisingly, high social anxiety was associated with an engagement bias away from threat, while low social anxiety was associated with a bias toward threat. These results were unaffected by the working-memory load manipulation. However, some methodological issues were identified with the study. Study Four overcame these methodological issues by using a paired angry and neutral face under no, low and high working-memory load conditions. Higher levels of social anxiety were associated with increased engagement with threat under no-load, but not under low- and high-load conditions. Thus, this body of research provides evidence that social anxiety is associated with an engagement bias to threat, which is driven by top-down attention

    Human Amygdala in Sensory and Attentional Unawareness: Neural Pathways and Behavioural Outcomes

    Get PDF
    One of the neural structures more often implicated in the processing of emotional signals in the absence of visual awareness is the amygdala. In this chapter, we review current evidence from human neuroscience in healthy and brain-damaged patients on the role of amygdala during non-conscious (visual) perception of emotional stimuli. Nevertheless, there is as of yet no consensus on the limits and conditions that affect the extent of amygdala’s response without focused attention or awareness. We propose to distinguish between attentional unawareness, a condition wherein the stimulus is potentially accessible to enter visual awareness but fails to do so because attention is diverted, and sensory unawareness, in which the stimulus fails to enter awareness because its normal processing in the visual cortex is suppressed. Within this conceptual framework, some of the apparently contradictory findings seem to gain new coherence and converge on the role of the amygdala in supporting different types of non-conscious emotion processing. Amygdala responses in the absence of awareness are linked to different functional mechanisms and are driven by more complex neural networks than commonly assumed. Acknowledging this complexity can be helpful to foster new studies on amygdala functions without awareness and their impact on human behaviour

    Neural correlates of fear: insights from neuroimaging

    Get PDF
    Fear anticipates a challenge to one's well-being and is a reaction to the risk of harm. The expression of fear in the individual is a constellation of physiological, behavioral, cognitive, and experiential responses. Fear indicates risk and will guide adaptive behavior, yet fear is also fundamental to the symptomatology of most psychiatric disorders. Neuroimaging studies of normal and abnormal fear in humans extend knowledge gained from animal experiments. Neuroimaging permits the empirical evaluation of theory (emotions as response tendencies, mental states, and valence and arousal dimensions), and improves our understanding of the mechanisms of how fear is controlled by both cognitive processes and bodily states. Within the human brain, fear engages a set of regions that include insula and anterior cingulate cortices, the amygdala, and dorsal brain-stem centers, such as periaqueductal gray matter. This same fear matrix is also implicated in attentional orienting, mental planning, interoceptive mapping, bodily feelings, novelty and motivational learning, behavioral prioritization, and the control of autonomic arousal. The stereotyped expression of fear can thus be viewed as a special construction from combinations of these processes. An important motivator for understanding neural fear mechanisms is the debilitating clinical expression of anxiety. Neuroimaging studies of anxiety patients highlight the role of learning and memory in pathological fear. Posttraumatic stress disorder is further distinguished by impairment in cognitive control and contextual memory. These processes ultimately need to be targeted for symptomatic recovery. Neuroscientific knowledge of fear has broader relevance to understanding human and societal behavior. As yet, only some of the insights into fear, anxiety, and avoidance at the individual level extrapolate to groups and populations and can be meaningfully applied to economics, prejudice, and politics. Fear is ultimately a contagious social emotion

    The role of facial movements in emotion recognition

    Get PDF
    Most past research on emotion recognition has used photographs of posed expressions intended to depict the apex of the emotional display. Although these studies have provided important insights into how emotions are perceived in the face, they necessarily leave out any role of dynamic information. In this Review, we synthesize evidence from vision science, affective science and neuroscience to ask when, how and why dynamic information contributes to emotion recognition, beyond the information conveyed in static images. Dynamic displays offer distinctive temporal information such as the direction, quality and speed of movement, which recruit higher-level cognitive processes and support social and emotional inferences that enhance judgements of facial affect. The positive influence of dynamic information on emotion recognition is most evident in suboptimal conditions when observers are impaired and/or facial expressions are degraded or subtle. Dynamic displays further recruit early attentional and motivational resources in the perceiver, facilitating the prompt detection and prediction of others’ emotional states, with benefits for social interaction. Finally, because emotions can be expressed in various modalities, we examine the multimodal integration of dynamic and static cues across different channels, and conclude with suggestions for future research

    Spatiotemporal dynamics of covert versus overt processing of happy, fearful and sad facial expressions

    Get PDF
    Behavioral and electrophysiological correlates of the influence of task demands on the processing of happy, sad, and fearful expressions were investigated in a within-subjects study that compared a perceptual distraction condition with task-irrelevant faces (e.g., covert emotion task) to an emotion task-relevant categorization condition (e.g., overt emotion task). A state-of-the-art non-parametric mass univariate analysis method was used to address the limitations of previous studies. Behaviorally, participants responded faster to overtly categorized happy faces and were slower and less accurate to categorize sad and fearful faces; there were no behavioral differences in the covert task. Event-related potential (ERP) responses to the emotional expressions included the N170 (140-180 ms), which was enhanced by emotion irrespective of task, with happy and sad expressions eliciting greater amplitudes than neutral expressions. EPN (200-400 ms) amplitude was modulated by task, with greater voltages in the overt condition, and by emotion, however, there was no interaction of emotion and task. ERP activity was modulated by emotion as a function of task only at a late processing stage, which included the LPP (500-800 ms), with fearful and sad faces showing greater amplitude enhancements than happy faces. This study reveals that affective content does not necessarily require attention in the early stages of face processing, supporting recent evidence that the core and extended parts of the face processing system act in parallel, rather than serially. The role of voluntary attention starts at an intermediate stage, and fully modulates the response to emotional content in the final stage of processing
    • 

    corecore