228 research outputs found

    It'll probably work out: improved list-decoding through random operations

    Full text link
    In this work, we introduce a framework to study the effect of random operations on the combinatorial list-decodability of a code. The operations we consider correspond to row and column operations on the matrix obtained from the code by stacking the codewords together as columns. This captures many natural transformations on codes, such as puncturing, folding, and taking subcodes; we show that many such operations can improve the list-decoding properties of a code. There are two main points to this. First, our goal is to advance our (combinatorial) understanding of list-decodability, by understanding what structure (or lack thereof) is necessary to obtain it. Second, we use our more general results to obtain a few interesting corollaries for list decoding: (1) We show the existence of binary codes that are combinatorially list-decodable from 1/2−ϵ1/2-\epsilon fraction of errors with optimal rate Ω(ϵ2)\Omega(\epsilon^2) that can be encoded in linear time. (2) We show that any code with Ω(1)\Omega(1) relative distance, when randomly folded, is combinatorially list-decodable 1−ϵ1-\epsilon fraction of errors with high probability. This formalizes the intuition for why the folding operation has been successful in obtaining codes with optimal list decoding parameters; previously, all arguments used algebraic methods and worked only with specific codes. (3) We show that any code which is list-decodable with suboptimal list sizes has many subcodes which have near-optimal list sizes, while retaining the error correcting capabilities of the original code. This generalizes recent results where subspace evasive sets have been used to reduce list sizes of codes that achieve list decoding capacity

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    Efficient Multi-Point Local Decoding of Reed-Muller Codes via Interleaved Codex

    Get PDF
    Reed-Muller codes are among the most important classes of locally correctable codes. Currently local decoding of Reed-Muller codes is based on decoding on lines or quadratic curves to recover one single coordinate. To recover multiple coordinates simultaneously, the naive way is to repeat the local decoding for recovery of a single coordinate. This decoding algorithm might be more expensive, i.e., require higher query complexity. In this paper, we focus on Reed-Muller codes with usual parameter regime, namely, the total degree of evaluation polynomials is d=Θ(q)d=\Theta({q}), where qq is the code alphabet size (in fact, dd can be as big as q/4q/4 in our setting). By introducing a novel variation of codex, i.e., interleaved codex (the concept of codex has been used for arithmetic secret sharing \cite{C11,CCX12}), we are able to locally recover arbitrarily large number kk of coordinates of a Reed-Muller code simultaneously at the cost of querying O(q2k)O(q^2k) coordinates. It turns out that our local decoding of Reed-Muller codes shows ({\it perhaps surprisingly}) that accessing kk locations is in fact cheaper than repeating the procedure for accessing a single location for kk times. Our estimation of success error probability is based on error probability bound for tt-wise linearly independent variables given in \cite{BR94}

    On the List-Decodability of Random Linear Codes

    Full text link
    For every fixed finite field \F_q, p∈(0,1−1/q)p \in (0,1-1/q) and ϵ>0\epsilon > 0, we prove that with high probability a random subspace CC of \F_q^n of dimension (1−Hq(p)−ϵ)n(1-H_q(p)-\epsilon)n has the property that every Hamming ball of radius pnpn has at most O(1/ϵ)O(1/\epsilon) codewords. This answers a basic open question concerning the list-decodability of linear codes, showing that a list size of O(1/ϵ)O(1/\epsilon) suffices to have rate within ϵ\epsilon of the "capacity" 1−Hq(p)1-H_q(p). Our result matches up to constant factors the list-size achieved by general random codes, and gives an exponential improvement over the best previously known list-size bound of qO(1/ϵ)q^{O(1/\epsilon)}. The main technical ingredient in our proof is a strong upper bound on the probability that ℓ\ell random vectors chosen from a Hamming ball centered at the origin have too many (more than Θ(ℓ)\Theta(\ell)) vectors from their linear span also belong to the ball.Comment: 15 page

    Efficiently decodable non-adaptive group testing

    Get PDF
    We consider the following "efficiently decodable" non-adaptive group testing problem. There is an unknown string x 2 f0; 1gn [x is an element of set {0,1} superscript n] with at most d ones in it. We are allowed to test any subset S [n] [S subset [n] ]of the indices. The answer to the test tells whether xi = 0 [x subscript i = 0] for all i 2 S [i is an element of S] or not. The objective is to design as few tests as possible (say, t tests) such that x can be identifi ed as fast as possible (say, poly(t)-time). Efficiently decodable non-adaptive group testing has applications in many areas, including data stream algorithms and data forensics. A non-adaptive group testing strategy can be represented by a t x n matrix, which is the stacking of all the characteristic vectors of the tests. It is well-known that if this matrix is d-disjunct, then any test outcome corresponds uniquely to an unknown input string. Furthermore, we know how to construct d-disjunct matrices with t = O(d2 [d superscript 2] log n) efficiently. However, these matrices so far only allow for a "decoding" time of O(nt), which can be exponentially larger than poly(t) for relatively small values of d. This paper presents a randomness efficient construction of d-disjunct matrices with t = O(d2 [d superscript 2] log n) that can be decoded in time poly(d) [function composed of] t log2 t + O(t2) [t log superscript 2 t and O (t superscript 2)]. To the best of our knowledge, this is the first result that achieves an efficient decoding time and matches the best known O(d2 log n) [O (d superscript 2 log n)] bound on the number of tests. We also derandomize the construction, which results in a polynomial time deterministic construction of such matrices when d = O(log n= log log n). A crucial building block in our construction is the notion of (d,l)-list disjunct matrices, which represent the more general "list group testing" problem whose goal is to output less than d + l positions in x, including all the (at most d) positions that have a one in them. List disjunct matrices turn out to be interesting objects in their own right and were also considered independently by [Cheraghchi, FCT 2009]. We present connections between list disjunct matrices, expanders, dispersers and disjunct matrices. List disjunct matrices have applications in constructing (d,l)- sparsity separator structures [Ganguly, ISAAC 2008] and in constructing tolerant testers for Reed-Solomon codes in the data stream model. 1 IntroductionDavid & Lucile Packard FoundationCenter for Massive Data Algorithmics (MADALGO)National Science Foundation (U.S.) (Grant CCF-0728645)National Science Foundation (U.S.) (Grant CCF-0347565)National Science Foundation (U.S.) (CAREER Award CCF-0844796

    Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction

    Full text link
    A method for concatenating quantum error-correcting codes is presented. The method is applicable to a wide class of quantum error-correcting codes known as Calderbank-Shor-Steane (CSS) codes. As a result, codes that achieve a high rate in the Shannon theoretic sense and that are decodable in polynomial time are presented. The rate is the highest among those known to be achievable by CSS codes. Moreover, the best known lower bound on the greatest minimum distance of codes constructible in polynomial time is improved for a wide range.Comment: 16 pages, 3 figures. Ver.4: Title changed. Ver.3: Due to a request of the AE of the journal, the present version has become a combination of (thoroughly revised) quant-ph/0610194 and the former quant-ph/0610195. Problem formulations of polynomial complexity are strictly followed. An erroneous instance of a lower bound on minimum distance was remove
    • …
    corecore