507 research outputs found

    Existence of Gaussian cubature formulas

    Get PDF
    We provide a necessary and sufficient condition for existence of Gaussian cubature formulas. It consists of checking whether some overdetermined linear system has a solution and so complements Mysovskikh's theorem which requires computing common zeros of orthonormal polynomials. Moreover, the size of the linear system shows that existence of a cubature formula imposes severe restrictions on the associated linear functional. For fixed precision (or degree), the larger the number of variables the worse it gets. And for fixed number of variables, the larger the precision the worse it gets. Finally, we also provide an interpretation of the necessary and sufficient condition in terms of existence of a polynomial with very specific properties

    Note on cubature formulae and designs obtained from group orbits

    Full text link
    In 1960, Sobolev proved that for a finite reflection group G, a G-invariant cubature formula is of degree t if and only if it is exact for all G-invariant polynomials of degree at most t. In this paper, we find some observations on invariant cubature formulas and Euclidean designs in connection with the Sobolev theorem. First, we give an alternative proof of theorems by Xu (1998) on necessary and sufficient conditions for the existence of cubature formulas with some strong symmetry. The new proof is shorter and simpler compared to the original one by Xu, and moreover gives a general interpretation of the analytically-written conditions of Xu's theorems. Second, we extend a theorem by Neumaier and Seidel (1988) on Euclidean designs to invariant Euclidean designs, and thereby classify tight Euclidean designs obtained from unions of the orbits of the corner vectors. This result generalizes a theorem of Bajnok (2007) which classifies tight Euclidean designs invariant under the Weyl group of type B to other finite reflection groups.Comment: 18 pages, no figur

    Cubature formulas, geometrical designs, reproducing kernels, and Markov operators

    Full text link
    Cubature formulas and geometrical designs are described in terms of reproducing kernels for Hilbert spaces of functions on the one hand, and Markov operators associated to orthogonal group representations on the other hand. In this way, several known results for spheres in Euclidean spaces, involving cubature formulas for polynomial functions and spherical designs, are shown to generalize to large classes of finite measure spaces (Ω,σ)(\Omega,\sigma) and appropriate spaces of functions inside L2(Ω,σ)L^2(\Omega,\sigma). The last section points out how spherical designs are related to a class of reflection groups which are (in general dense) subgroups of orthogonal groups
    corecore