3,081 research outputs found

    Distance Oracles for Time-Dependent Networks

    Full text link
    We present the first approximate distance oracle for sparse directed networks with time-dependent arc-travel-times determined by continuous, piecewise linear, positive functions possessing the FIFO property. Our approach precomputes (1+ϵ)−(1+\epsilon)-approximate distance summaries from selected landmark vertices to all other vertices in the network. Our oracle uses subquadratic space and time preprocessing, and provides two sublinear-time query algorithms that deliver constant and (1+σ)−(1+\sigma)-approximate shortest-travel-times, respectively, for arbitrary origin-destination pairs in the network, for any constant σ>ϵ\sigma > \epsilon. Our oracle is based only on the sparsity of the network, along with two quite natural assumptions about travel-time functions which allow the smooth transition towards asymmetric and time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An extended abstract also appeared in the 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014, track-A

    Evidence on Financial Globalization and Crisis: Geographic/Bilateral External Balance Sheets

    Get PDF
    This article reviews the main sources of data on the geographic composition of countries' external balance sheets, covering both international and country-specific sources. It examines the determinants of bilateral financial assets and liabilities and discusses how gravity models, traditionally used in the trade literature, have been applied to explain bilateral financial links. A new dataset is used to derive some stylized facts on how bilateral financial links look like, how they have evolved over time and how they compare with trade links. The role that cross-border financial links play in the international transmission of shocks is discussed, with reference to the 2007-2009 financial crisis

    Pruning based Distance Sketches with Provable Guarantees on Random Graphs

    Full text link
    Measuring the distances between vertices on graphs is one of the most fundamental components in network analysis. Since finding shortest paths requires traversing the graph, it is challenging to obtain distance information on large graphs very quickly. In this work, we present a preprocessing algorithm that is able to create landmark based distance sketches efficiently, with strong theoretical guarantees. When evaluated on a diverse set of social and information networks, our algorithm significantly improves over existing approaches by reducing the number of landmarks stored, preprocessing time, or stretch of the estimated distances. On Erd\"{o}s-R\'{e}nyi graphs and random power law graphs with degree distribution exponent 2<β<32 < \beta < 3, our algorithm outputs an exact distance data structure with space between Θ(n5/4)\Theta(n^{5/4}) and Θ(n3/2)\Theta(n^{3/2}) depending on the value of β\beta, where nn is the number of vertices. We complement the algorithm with tight lower bounds for Erdos-Renyi graphs and the case when β\beta is close to two.Comment: Full version for the conference paper to appear in The Web Conference'1
    • …
    corecore