879 research outputs found

    Environmental odour management by artificial neural network – A review

    Get PDF
    Unwanted odour emissions are considered air pollutants that may cause detrimental impacts to the environment as well as an indicator of unhealthy air to the affected individuals resulting in annoyance and health related issues. These pollutants are challenging to handle due to their invisibility to the naked eye and can only be felt by the human olfactory stimuli. A strategy to address this issue is by introducing an intelligent processing system to odour monitoring instrument such as artificial neural network to achieve a robust result. In this paper, a review on the application of artificial neural network for the management of environmental odours is presented. The principal factors in developing an optimum artificial neural network were identified as elements, structure and learning algorithms. The management of environmental odour has been distinguished into four aspects such as measurement, characterization, control and treatment and continuous monitoring. For each aspect, the performance of the neural network is critically evaluated emphasizing the strengths and weaknesses. This work aims to address the scarcity of information by addressing the gaps from existing studies in terms of the selection of the most suitable configuration, the benefits and consequences. Adopting this technique could provide a new avenue in the management of environmental odours through the use of a powerful mathematical computing tool for a more efficient and reliable outcome. Keywords: Electronic nose, Environmental pollution, Human health, Odour emission, Public concer

    Potential use of electronic noses, electronic tongues and biosensors, as multisensor systems for spoilage examination in foods

    Get PDF
    Development and use of reliable and precise detecting systems in the food supply chain must be taken into account to ensure the maximum level of food safety and quality for consumers. Spoilage is a challenging concern in food safety considerations as it is a threat to public health and is seriously considered in food hygiene issues accordingly. Although some procedures and detection methods are already available for the determination ofspoilage in food products, these traditional methods have some limitations and drawbacks as they are time-consuming,labour intensive and relatively expensive. Therefore, there is an urgent need for the development of rapid, reliable, precise and non-expensive systems to be used in the food supply and production chain as monitoring devices to detect metabolic alterations in foodstuff. Attention to instrumental detection systems such as electronic noses, electronic tongues and biosensors coupled with chemometric approaches has greatly increased because they have been demonstrated as a promising alternative for the purpose of detecting and monitoring food spoilage. This paper mainly focuses on the recent developments and the application of such multisensor systems in the food industry. Furthermore, the most traditionally methods for food spoilage detection are introduced in this context as well. The challenges and future trends of the potential use of the systems are also discussed. Based on the published literature, encouraging reports demonstrate that such systems are indeed the most promising candidates for the detection and monitoring of spoilage microorganisms in different foodstuff

    Piezoelectric microsensors for semiochemical communication

    Get PDF
    Chemical communication plays vital role in the mediating the behaviour of an organism living in the “odour space”. The mechanisms by which odours are generated and detected by the organism has evolved over thousands of years and thus the potential advantages of translating this system into a fully functional communication system has opened new avenues in the area of multi-disciplinary research. This formed the basis of the Biosynthetic Infochemical Communications project – iCHEM whose central aim was to develop a new class of communication technology based on the biosynthesis pathways of the moth, S. littoralis. This novel infochemical communication system would consist of a “chemoemitter” unit which would generate a precise mix of infochemicals which after travelling through the odour space would be detected by a complementary tuned detector – the “chemoreceiver” unit comprising of a ligand specific detection element and an associated biophysical model functioning similar to the antennal lobe neuron of the moth. This combined novel system will have the capability of communicating by the help of chemicals only, in the vapour or liquid phase. For the work presented in this thesis, the novel concept of infochemical communication has been examined in the vapour and liquid phase by employing piezoelectric microsensors. This has been achieved and demonstrated throughout the thesis by employing chemo-specific acoustic wave microsensors. For vapour phase assessment, quartz crystal microbalance, were coated with different organic polymer coatings and incorporated in a prototype infochemical communication system detecting encoded volatiles. For liquid phase assessment, shear horizontal surface acoustic wave (SH-SAW) microsensors were specifically designed and immobilised within Sf9 insect cells. This GPCR based whole cell biosensing system was then employed to detect ligand specific activations thus acting as a precursor to the development of a fully functionalised OR based signalling system, thus contributing to the growing field of communication and labelling technology

    High frequency acousto-electric microsensors for liquid analysis

    Get PDF
    Liquid sensors are required for a multitude of applications in the food and beverage sectors, in the pharmaceutical industry or environmental monitoring. The focus of this work is on the development of high frequency shear horizontal surface acoustic wave (SH-SAW) sensors for liquid media identification and characterisation. Among the various types of surface acoustic wave modes propagating in solids, the SH-SAWs were found to be the most suitable for operation in liquids. Dual delay line and resonator sensor configurations were designed and fabricated on lithium tantalate (LiTa03) substrates; the design and the subsequent fabrication procedures of the sensors are described in detail. Furthermore, the electrical characterization of the sensors was carried out with a network analyser, and a comparative analysis was performed between sensors with different configurations. The interdigital transducers, used as the interface between the electrical and acoustic domains, presented good reflection coefficients and had near perfect matched impedances and return loss figures up to 45 dB. The insertion loss of the sensors varied with the surface conditions while it was improved by using total or partial metallization of the surface or employing grating structures on the propagation path. The SH-SAW devices were exposed to basic taste solutions and all the sensor configurations tested were able to discriminate them well. Measurements were done in both standard wired set-ups and a semi-wireless set-up, thus proving the sensor's capability for remote operation. Further investigations regarding the electronic tongue applicability of the SH-SAW sensors were conducted on a two port resonator device. The resonator was tested with six basic taste solutions, with taste solutions with varying concentrations, with binary mixtures of taste solutions and proved successful in identifying all test samples. A multivariate analysis was performed on the resonator data, and confirmed that the sensor's responses are influenced by the physical properties of the tested solutions. The multiple linear models derived are statistically significant and can explain high percentage of the data variability, offering a simplified alternative to the complex analytical models of the SH-SAW sensors. Also, a voltage modulated sensor system was proposed for smart assaying of biomaterials and its operation principle is described. The preliminary tests carried out showed a significant voltage effect on carbon nanoparticles. The voltage modulated system is proposed as an analytical microsystem for the screening of bacterial cells. All sensors in this project had no bio-chemical selective layer making them nonspecific, yet they create robust, durable and low-cost systems

    Active Control Strategies for Chemical Sensors and Sensor Arrays

    Get PDF
    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating temperature. In many cases, additional information can be extracted by modulating some internal property (e.g., temperature, voltage) of the sensor. However, this additional information comes at a cost (e.g., sensing times, power consumption), so offline optimization techniques (such as feature-subset selection) are commonly used to identify a subset of the most informative sensor tunings. An alternative to offline techniques is active sensing, where the sensor tunings are adapted in real-time based on the information obtained from previous measurements. Prior work in domains such as vision, robotics, and target tracking has shown that active sensing can schedule agile sensors to manage their sensing resources more efficiently than passive sensing, and also balance between sensing costs and performance. Inspired from the history of active sensing, in this dissertation, we developed active sensing algorithms that address three different computational problems in chemical sensing. First, we consider the problem of classification with a single tunable chemical sensor. We formulate the classification problem as a partially observable Markov decision process, and solve it with a myopic algorithm. At each step, the algorithm estimates the utility of each sensing configuration as the difference between expected reduction in Bayesian risk and sensing cost, and selects the configuration with maximum utility. We evaluated this approach on simulated Fabry-Perot interferometers (FPI), and experimentally validated on metal-oxide (MOX) sensors. Our results show that the active sensing method obtains better classification performance than passive sensing methods, and also is more robust to additive Gaussian noise in sensor measurements. Second, we consider the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We maintain a belief distribution that assigns a probability to each profile, and update the distribution by incorporating the latest sensor measurements. To select the sensor’s next operating configuration, we use a myopic algorithm that chooses the operating configuration expected to best reduce the uncertainty in the future belief distribution. We validated this approach on both simulated and real MOX sensors. The results again demonstrate improved estimation performance and robustness to noise. Lastly, we present an algorithm that extends active sensing to sensor arrays. This algorithm borrows concepts from feature subset selection to enable an array of tunable sensors operate collaboratively for the classification of gas samples. The algorithm constructs an optimized action vector at each sensing step, which contains separate operating configurations for each sensor in the array. When dealing with sensor arrays, one needs to account for the correlation among sensors. To this end, we developed two objective functions: weighted Fisher scores, and dynamic mutual information, which can quantify the discriminatory information and redundancy of a given action vector with respect to the measurements already acquired. Once again, we validated the approach on simulated FPI arrays and experimentally tested it on an array of MOX sensors. The results show improved classification performance and robustness to additive noise

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    Air Quality and Source Apportionment

    Get PDF
    Atmospheric particulate matter (PM) is known to have far-ranging impacts on human health through to climate forcing. The characterization of emission sources and the quantification of specific source impacts to PM concentrations significantly enhance our understanding of, and our ability to, eventually predicting the fate and transport of atmospheric PM and its associated impacts on humans and the environment. Recent advances in source apportionment applications have contributed unique combinations of chemical and numerical techniques for determining the contributions of specific sources, including diesel exhaust and biomass burning. These advances also identify and help characterize the contributions of previously uncharacterized sources. Numerical modeling has also enabled estimations of contributions of emission sources to atmospherically processed PM in urban and rural regions. Investigation into the emissions sources driving air quality is currently of concern across the globe. This Special Issue offers studies at the intersection of air quality and source apportionment for study areas in China, Germany, Iceland, Mexico, and the United States. Studies cover diverse methods for chemical characterization and modeling of the impact of different emission sources on air quality

    Enhanced kinetics and modeling of PAN-based carbon felt anodes in vanadium redox flow batteries

    Get PDF
    All-vanadium redox flow batteries (VRFBs) are a promising technology for grid-level energy storage, however, there are still several limitations in the forms of durability, efficiency, and overall costs, which are barriers to its commercial viability. With both bulk electrolyte flowing through its porous matrix and species flux at the solid-electrolyte interface, electrodes are the component of VRFB systems which host electrochemical reactions and facilitate contact between the liquid phase electrolyte and the electronically conductive solid phase. While the more limiting electrode in VRFB systems is dependent on the material, for polyacrylonitrile (PAN)-based carbon felts, the anode constitutes a larger portion of the total overpotential than the cathode. In-situ characterization of modified felts can pro-vide both a path towards understanding the source improvements to the anode but also their transient behavior, thereby creating a path to higher voltage and energy efficiencies and higher commercial viability.The primary experimental components of this work are the symmetric cell con-figuration and electrochemical impedance spectroscopy (EIS). The symmetric cell is an in-situ experimental configuration, which utilizes a single electrolyte at both half-cells of a reactor. The symmetric cell allows an experiment to maintain a constant state of charge, incur no net-crossover and isolate a single redox couple.Electrochemical impedance spectroscopy is the focal experimental diagnostic technique in this work, owing to both its minimal perturbation of the state of a cell and to the insights into electrochemical interfaces it provides. The combination of these two techniques is utilized in this work to both characterize several material modifications and to enhance the understanding of the sensitivity of this diagnostic for the purposes of model selection. A novel experimental configuration is also developed, which combines a cell-in-series approach with the symmetric cell in order to continuously characterize VRFB electrodes as a function of state of charge.The outcomes of this work elucidate methodologies for in-situ characterization of anode modifications from an experimental perspective and also frameworks for characterizing porous electrochemical interfaces, investigating sensitivity, and elucidating systematic approaches to separate electrochemical phenomena occurring at a VRFB anode interface

    A Primer for Monitoring Water Funds

    Get PDF
    This document is intended to assist people working on Water Funds to understand their information needs and become familiar with the strengths and weaknesses of various monitoring approaches. This primer is not intended to make people monitoring experts, but rather to help them become familiar with and conversant in the major issues so they can communicate effectively with experts to design a scientifically defensible monitoring program.The document highlights the critical information needs common to Water Fund projects and summarizes issues and steps to address in developing a Water Fund monitoring program. It explains key concepts and challenges; suggests monitoring parameters and an array of sampling designs to consider as a starting-point; and provides suggestions for further reading, links to helpful resources,and an annotated bibliography of studies on the impacts that result from activities commonly implemented in Water Fund projects
    • …
    corecore