61,388 research outputs found

    Estimation of forest variables using airborne laser scanning

    Get PDF
    Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories

    An Agent-Based Model of Multifunctional Agricultural Landscape Using Genetic Algorithms

    Get PDF
    Landowner characteristics influence his/her willingness to change landuse practices to provide more or less environmental benefits. However, most studies of agricultural/environmental polices identify landowners as homogenous. And, the primary cause of failure of many environmental and other polices is the lack of knowledge on how humans may respond to polices based on changes in their behavior (Stern, 1993). From socioeconomic theory and empirical research, landowners can be identified as individuals who make agricultural landuse decisions independently based on their objectives. Identifying possible classes of landowners, assessing how each would potentially respond to policy alternatives, and the resulting pattern of land uses in a watershed or a riparian corridor would be very useful to policy makers as they evaluated alternatives. Agricultural landscapes are important producers of ecosystem services. The mix of ecosystem services and commodity outputs of an agricultural landscape depends on the spatial pattern of land uses emerging from individual land use decisions. However, many empirical studies show that the production of ecosystem services from agricultural landscapes is declining. This is consistent with research conducted over the last few decades showing there is a narrow range of social circumstances under which landowners are willing to make investments in the present to achieve public benefits in the future through investing in natural capital resulting in public goods which are frequently produced as ecosystem services. In this study an agent-based model within a watershed planning context is used to analyze the tradeoffs involved in producing a number of ecosystem services and agricultural commodities given price and policy scenarios while assuming three different types of agents in terms of their goals. The agents represent landowners who have been divided into a number of different groups based on their goals and the size of their farm operations. The multi-agent-based model is developed using a heuristic search and optimization technique called genetic algorithm (GA) (Holland), which belongs to a broader class of evolutionary algorithms. GAs exhibit three properties (1) they start with a population of solution, (2) they explore the solution space through recombination and mutation and (3) they evaluate individual solutions based on their appropriate fitness value(s), for example given profit maximizing agents this would be gross margin. A GA is a heuristic stochastic search and optimization method, which works by mimicking the evolutionary principles and chromosomal processing in natural genetics. The three economic agents that are modeled are based on variations in their objective functions and constraints. This study will help in identifying the tradeoffs associated with various agents in the provision of ecosystem services and agricultural commodities. The agent model developed here will help policy and decision maker identify the various agents within the watershed and assess various policy options based on that information. The study will also help to understand the interaction and feedback between the agents and their environment associated with various policy initiatives. The results of the study indicate that the agent model correctly predicts the actual landuse landcover map by 75 percent.Multifunctional agriculture, Agent based modeling, Genetic Algorithm, Environmental Economics and Policy, Land Economics/Use,

    Inverse meta-modelling to estimate soil available water capacity at high spatial resolution across a farm

    Get PDF
    Geo-referenced information on crop production that is both spatially- and temporally-dense would be useful for management in precision agriculture (PA). Crop yield monitors provide spatially but not temporally dense information. Crop growth simulation modelling can provide temporal density, but traditionally fail on the spatial issue. The research described was motivated by the challenge of satisfying both the spatial and temporal data needs of PA. The methods presented depart from current crop modelling within PA by introducing meta-modelling in combination with inverse modelling to estimate site-specific soil properties. The soil properties are used to predict spatially- and temporally-dense crop yields. An inverse meta-model was derived from the agricultural production simulator (APSIM) using neural networks to estimate soil available water capacity (AWC) from available yield data. Maps of AWC with a resolution of 10 m were produced across a dryland grain farm in Australia. For certain years and fields, the estimates were useful for yield prediction with APSIM and multiple regression, whereas for others the results were disappointing. The estimates contain ‘implicit information’ about climate interactions with soil, crop and landscape that needs to be identified. Improvement of the meta-model with more AWC scenarios, more years of yield data, inclusion of additional variables and accounting for uncertainty are discussed. We concluded that it is worthwhile to pursue this approach as an efficient way of extracting soil physical information that exists within crop yield maps to create spatially- and temporally-dense dataset

    Small U.S. Dairy Farms: Can They Compete?

    Get PDF
    The U.S. dairy industry is undergoing rapid structural change, evolving from a structure including many small farmers in the Upper Midwest and Northeast to one that includes very large farms in new production regions. Small farms are struggling to retain competitiveness via improved management and low-input systems. Using data from USDA’s Agricultural Resource Management Survey, we determine the extent of U.S. conventional and pasture-based milk production during 2003-2007, and estimate net returns, scale efficiency, and technical efficiency associated with the systems across different operation sizes. We compare the financial performance of small conventional and pasture-based producers with one another and with largescale producers. A stochastic production frontier is used to analyze performance over the period for conventional and pasture technologies identified using a binomial logit model. Large conventional farms generally outperformed smaller farms using most economic measures – technical efficiency, various profitability measures, and returns to scale.Pasture-based system, technical efficiency, returns to scale, dairy, Livestock Production/Industries, Productivity Analysis,

    Crop Yield Prediction Using Deep Neural Networks

    Get PDF
    Crop yield is a highly complex trait determined by multiple factors such as genotype, environment, and their interactions. Accurate yield prediction requires fundamental understanding of the functional relationship between yield and these interactive factors, and to reveal such relationship requires both comprehensive datasets and powerful algorithms. In the 2018 Syngenta Crop Challenge, Syngenta released several large datasets that recorded the genotype and yield performances of 2,267 maize hybrids planted in 2,247 locations between 2008 and 2016 and asked participants to predict the yield performance in 2017. As one of the winning teams, we designed a deep neural network (DNN) approach that took advantage of state-of-the-art modeling and solution techniques. Our model was found to have a superior prediction accuracy, with a root-mean-square-error (RMSE) being 12% of the average yield and 50% of the standard deviation for the validation dataset using predicted weather data. With perfect weather data, the RMSE would be reduced to 11% of the average yield and 46% of the standard deviation. We also performed feature selection based on the trained DNN model, which successfully decreased the dimension of the input space without significant drop in the prediction accuracy. Our computational results suggested that this model significantly outperformed other popular methods such as Lasso, shallow neural networks (SNN), and regression tree (RT). The results also revealed that environmental factors had a greater effect on the crop yield than genotype.Comment: 9 pages, Presented at 2018 INFORMS Conference on Business Analytics and Operations Research (Baltimore, MD, USA). One of the winning solutions to the 2018 Syngenta Crop Challeng

    MICRO VERSUS MACRO ACREAGE RESPONSE MODELS: DOES SITE-SPECIFIC INFORMATION MATTER?

    Get PDF
    Because requisite micro data frequently are unavailable, it is common practice to use aggregate data to estimate economic relationships representing the behavior of individual agents. A substantial body of literature has examined conditions under which inferences between micro and aggregate specifications can be made. Less attention has been focused on the relative accuracy of predictions for each scale of model. In an empirical application, we compare the goodness-of-fit measures of eight sets of acreage response models, varying in aggregation from field- (micro-) level to regional- (macro-) level models. Results suggest aggregate models are superior to the micro model in predicting acreage response, even thought the micro models contain substantially more data on site-specific characteristics.Agribusiness,

    Vulnerability assessments of pesticide leaching to groundwater

    Get PDF
    Pesticides may have adverse environmental effects if they are transported to groundwater and surface waters. The vulnerability of water resources to contamination of pesticides must therefore be evaluated. Different stakeholders, with different objectives and requirements, are interested in such vulnerability assessments. Various assessment methods have been developed in the past. For example, the vulnerability of groundwater to pesticide leaching may be evaluated by indices and overlay-based methods, by statistical analyses of monitoring data, or by using process-based models of pesticide fate. No single tool or methodology is likely to be appropriate for all end-users and stakeholders, since their suitability depends on the available data and the specific goals of the assessment. The overall purpose of this thesis was to develop tools, based on different process-based models of pesticide leaching that may be used in groundwater vulnerability assessments. Four different tools have been developed for end-users with varying goals and interests: (i) a tool based on the attenuation factor implemented in a GIS, where vulnerability maps are generated for the islands of Hawaii (U.S.A.), (ii) a simulation tool based on the MACRO model developed to support decision-makers at local authorities to assess potential risks of leaching of pesticides to groundwater following normal usage in drinking water abstraction districts, (iii) linked models of the soil root zone and groundwater to investigate leaching of the pesticide mecoprop to shallow and deep groundwater in fractured till, and (iv) a meta-model of the pesticide fate model MACRO developed for 'worst-case' groundwater vulnerability assessments in southern Sweden. The strengths and weaknesses of the different approaches are discussed

    Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale

    Get PDF
    Soil organic carbon (SOC) plays a major role in the global carbon budget. It can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Improving the tools that model the spatial distributions of SOC stocks at national scales is a priority, both for monitoring changes in SOC and as an input for global carbon cycles studies. In this paper, we compare and evaluate two recent and promising modelling approaches. First, we considered several increasingly complex boosted regression trees (BRT), a convenient and efficient multiple regression model from the statistical learning field. Further, we considered a robust geostatistical approach coupled to the BRT models. Testing the different approaches was performed on the dataset from the French Soil Monitoring Network, with a consistent cross-validation procedure. We showed that when a limited number of predictors were included in the BRT model, the standalone BRT predictions were significantly improved by robust geostatistical modelling of the residuals. However, when data for several SOC drivers were included, the standalone BRT model predictions were not significantly improved by geostatistical modelling. Therefore, in this latter situation, the BRT predictions might be considered adequate without the need for geostatistical modelling, provided that i) care is exercised in model fitting and validating, and ii) the dataset does not allow for modelling of local spatial autocorrelations, as is the case for many national systematic sampling schemes

    Livestock farmers' attitude towards manure separation technology as future strategy

    Get PDF
    In this paper, an ordered probit model is used to assess the factors that affect the probability of livestock farmers having plans to adopt manure separation technology in the future. A survey, based on a postal and computerized questionnaire of representative dairy and pig farms in the Netherlands was carried out in 2009. The results show that age of farmer and a variable which accounts for the interaction between size and location of the farm are important variables explaining the probability of farmers having plans to adopt manure separation technology. Furthermore, farmers who agreed that future application norms are the driving force for considering adoption of manure separation technology were more likely to consider manure separation as the right strategy for their farm. This outcome implies that farmers are considering manure separation as a strategy to survive the more stringent future application norms. Policy implications are that young farmers with bigger Dutch size unit located in manure regions where there is oversupply of manure are more likely to adopt manure separation technology in the futur
    corecore