1,174 research outputs found

    Approximation paper, part 1

    Get PDF
    In this paper we discuss approximations between neural nets, fuzzy expert systems, fuzzy controllers, and continuous processes

    Approximation properties of the neuro-fuzzy minimum function

    Get PDF
    The integration of fuzzy logic systems and neural networks in data driven nonlinear modeling applications has generally been limited to functions based upon the multiplicative fuzzy implication rule for theoretical and computational reasons. We derive a universal approximation result for the minimum fuzzy implication rule as well as a differentiable substitute function that allows fast optimization and function approximation with neuro-fuzzy networks. --Fuzzy Logic,Neural Networks,Nonlinear Modeling,Optimization

    An Architecture-Altering and Training Methodology for Neural Logic Networks: Application in the Banking Sector

    Get PDF
    Artificial neural networks have been universally acknowledged for their ability on constructing forecasting and classifying systems. Among their desirable features, it has always been the interpretation of their structure, aiming to provide further knowledge for the domain experts. A number of methodologies have been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic networks have been especially designed in order to enable the interpretation of their structure into a number of simple logical rules and they can be seen as a network representation of a logical rule base. Although powerful by their definition in this context, neural logic networks have performed poorly when used in approaches that required training from data. Standard training methods, such as the back-propagation, require the networkā€™s synapse weight altering, which destroys the networkā€™s interpretability. The methodology in this paper overcomes these problems and proposes an architecture-altering technique, which enables the production of highly antagonistic solutions while preserving any weight-related information. The implementation involves genetic programming using a grammar-guided training approach, in order to provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from the banking sector with encouraging results

    Self-growing neural network architecture using crisp and fuzzy entropy

    Get PDF
    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed

    KNOWLEDGE-BASED NEURAL NETWORK FOR LINE FLOW CONTINGENCY SELECTION AND RANKING

    Get PDF
    The Line flow Contingency Selection and Ranking (CS & R) is performed to rank the critical contingencies in order of their severity. An Artificial Neural Network based method for MW security assessment corresponding to line outage events have been reported by various authors in the literature. One way to provide an understanding of the behaviour of Neural Networks is to extract rules that can be provided to the user. The domain knowledge (fuzzy rules extracted from Multi-layer Perceptron model trained by Back Propagation algorithm) is integrated into a Neural Network for fast and accurate CS & R in an IEEE 14-bus system, for unknown load patterns and are found to be suitable for on-line applications at Energy Management Centers. The system user is provided with the capability to determine the set of conditions under which a line-outage is critical, and if critical, then how severe it is, thereby providing some degree of transparency of the ANN solution
    • ā€¦
    corecore