31 research outputs found

    The equational theories of representable residuated semigroups

    Get PDF
    We show that the equational theory of representable lower semilattice-ordered residuated semigroups is finitely based. We survey related results

    Lower semilattice-ordered residuated semigroups and substructural logics

    Get PDF
    We look at lower semilattice-ordered residuated semigroups and, in particular, the representable ones, i.e., those that are isomorphic to algebras of binary relations. We will evaluate expressions (terms, sequents, equations, quasi-equations) in representable algebras and give finite axiomatizations for several notions of validity. These results will be applied in the context of substructural logics

    Domain Range Semigroups and Finite Representations

    Get PDF
    Relational semigroups with domain and range are a useful tool for modelling nondeterministic programs. We prove that the representation class of domain-range semigroups with demonic composition is not finitely axiomatisable. We extend the result for ordered domain algebras and show that any relation algebra reduct signature containing domain, range, converse, and composition, but no negation, meet, nor join has the finite representation property. That is any finite representable structure of such a signature is representable over a finite base. We survey the results in the area of the finite representation property

    The Structure of Generalized BI-algebras and Weakening Relation Algebras

    Get PDF
    Generalized bunched implication algebras (GBI-algebras) are defined as residuated lattices with a Heyting implication, and are positioned between Boolean algebras with operators and lattices with operators. We characterize congruences on GBI-algebras by filters that are closed under Gumm–Ursini terms, and for involutive GBI-algebras these terms simplify to a dual version of the congruence term for relation algebras together with two more terms. We prove that representable weakening relation algebras form a variety of cyclic involutive GBI-algebras, denoted by RWkRA, containing the variety of representable relation algebras. We describe a double-division conucleus construction on residuated lattices and on (cyclic involutive) GBI-algebras and show that it generalizes Comer’s double coset construction for relation algebras. Also, we explore how the double-division conucleus construction interacts with other class operators and in particular with variety generation. We focus on the fact that it preserves a special discriminator term, thus yielding interesting discriminator varieties of GBI-algebras, including RWkRA. To illustrate the generality of the variety of weakening relation algebras, we prove that all distributive lattice-ordered pregroups and hence all lattice-ordered groups embed, as residuated lattices, into representable weakening relation algebras on chains. Moreover, every representable weakening relation algebra is embedded in the algebra of all residuated maps on a doubly-algebraic distributive lattice. We give a number of other instructive examples that show how the double-division conucleus illuminates the structure of distributive involutive residuated lattices and GBI-algebras

    An order-theoretic analysis of interpretations among propositional deductive systems

    Full text link
    In this paper we study interpretations and equivalences of propositional deductive systems by using a quantale-theoretic approach introduced by Galatos and Tsinakis. Our aim is to provide a general order-theoretic framework which is able to describe and characterize both strong and weak forms of interpretations among propositional deductive systems also in the cases where the systems have different underlying languages

    Embedding theorems and finiteness properties for residuated structures and substructural logics

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2008.Paper 1. This paper establishes several algebraic embedding theorems, each of which asserts that a certain kind of residuated structure can be embedded into a richer one. In almost all cases, the original structure has a compatible involution, which must be preserved by the embedding. The results, in conjunction with previous findings, yield separative axiomatizations of the deducibility relations of various substructural formal systems having double negation and contraposition axioms. The separation theorems go somewhat further than earlier ones in the literature, which either treated fewer subsignatures or focussed on the conservation of theorems only. Paper 2. It is proved that the variety of relevant disjunction lattices has the finite embeddability property (FEP). It follows that Avron’s relevance logic RMImin has a strong form of the finite model property, so it has a solvable deducibility problem. This strengthens Avron’s result that RMImin is decidable. Paper 3. An idempotent residuated po-monoid is semiconic if it is a subdirect product of algebras in which the monoid identity t is comparable with all other elements. It is proved that the quasivariety SCIP of all semiconic idempotent commutative residuated po-monoids is locally finite. The lattice-ordered members of this class form a variety SCIL, which is not locally finite, but it is proved that SCIL has the FEP. More generally, for every relative subvariety K of SCIP, the lattice-ordered members of K have the FEP. This gives a unified explanation of the strong finite model property for a range of logical systems. It is also proved that SCIL has continuously many semisimple subvarieties, and that the involutive algebras in SCIL are subdirect products of chains. Paper 4. Anderson and Belnap’s implicational system RMO can be extended conservatively by the usual axioms for fusion and for the Ackermann truth constant t. The resulting system RMO is algebraized by the quasivariety IP of all idempotent commutative residuated po-monoids. Thus, the axiomatic extensions of RMO are in one-to-one correspondence with the relative subvarieties of IP. It is proved here that a relative subvariety of IP consists of semiconic algebras if and only if it satisfies x (x t) x. Since the semiconic algebras in IP are locally finite, it follows that when an axiomatic extension of RMO has ((p t) p) p among its theorems, then it is locally tabular. In particular, such an extension is strongly decidable, provided that it is finitely axiomatized
    corecore