102 research outputs found

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Uniform Infinite Planar Triangulations

    Full text link
    The existence of the weak limit as n --> infinity of the uniform measure on rooted triangulations of the sphere with n vertices is proved. Some properties of the limit are studied. In particular, the limit is a probability measure on random triangulations of the plane.Comment: 36 pages, 4 figures; Journal revised versio

    Non-Crossing Hamiltonian Paths and Cycles in Output-Polynomial Time

    Get PDF
    We show that, for planar point sets, the number of non-crossing Hamiltonian paths is polynomially bounded in the number of non-crossing paths, and the number of non-crossing Hamiltonian cycles (polygonalizations) is polynomially bounded in the number of surrounding cycles. As a consequence, we can list the non-crossing Hamiltonian paths or the polygonalizations, in time polynomial in the output size, by filtering the output of simple backtracking algorithms for non-crossing paths or surrounding cycles respectively. To prove these results we relate the numbers of non-crossing structures to two easily-computed parameters of the point set: the minimum number of points whose removal results in a collinear set, and the number of points interior to the convex hull. These relations also lead to polynomial-time approximation algorithms for the numbers of structures of all four types, accurate to within a constant factor of the logarithm of these numbers

    Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof

    Full text link
    We consider the problem of enumeration of planar maps and revisit its one-matrix model solution in the light of recent combinatorial techniques involving conjugated trees. We adapt and generalize these techniques so as to give an alternative and purely combinatorial solution to the problem of counting arbitrary planar maps with prescribed vertex degrees.Comment: 29 pages, 14 figures, tex, harvmac, eps

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. ([13]). On the other hand, Chudnovsky and Seymour ([8]) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with n vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγn, where c > 0 and γ ∼ 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (not necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations

    Rectangular Matrix Models and Combinatorics of Colored Graphs

    Full text link
    We present applications of rectangular matrix models to various combinatorial problems, among which the enumeration of face-bicolored graphs with prescribed vertex degrees, and vertex-tricolored triangulations. We also mention possible applications to Interaction-Round-a-Face and hard-particle statistical models defined on random lattices.Comment: 42 pages, 11 figures, tex, harvmac, eps
    • …
    corecore