4,334 research outputs found

    On a generalization of iterated and randomized rounding

    Get PDF
    We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems where iterated rounding has been useful

    Approximating Bin Packing within O(log OPT * log log OPT) bins

    Full text link
    For bin packing, the input consists of n items with sizes s_1,...,s_n in [0,1] which have to be assigned to a minimum number of bins of size 1. The seminal Karmarkar-Karp algorithm from '82 produces a solution with at most OPT + O(log^2 OPT) bins. We provide the first improvement in now 3 decades and show that one can find a solution of cost OPT + O(log OPT * log log OPT) in polynomial time. This is achieved by rounding a fractional solution to the Gilmore-Gomory LP relaxation using the Entropy Method from discrepancy theory. The result is constructive via algorithms of Bansal and Lovett-Meka

    Rounding Sum-of-Squares Relaxations

    Get PDF
    We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand\~{a}o and Harrow, STOC '13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector vv in the subspace satisfying v44>c(k/d1/3)v22|v|_4^4 > c(k/d^{1/3}) |v|_2^2, where vp=(Eivip)1/p|v|_p = (E_i v_i^p)^{1/p}. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted μ\mu-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever μ<O(min(1,n/d2))\mu < O(\min(1,n/d^2)), improving for d<n2/3d < n^{2/3} prior methods which intrinsically required μ<O(1/(d))\mu < O(1/\sqrt(d))

    Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration

    Get PDF
    Computing optimal transport distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact achieved by Cuturi's Sinkhorn Distances. This result relies on a new analysis of Sinkhorn iteration, which also directly suggests a new greedy coordinate descent algorithm, Greenkhorn, with the same theoretical guarantees. Numerical simulations illustrate that Greenkhorn significantly outperforms the classical Sinkhorn algorithm in practice
    corecore