97 research outputs found

    The Decentralized File System Igor-FS as an Application for Overlay-Networks

    Get PDF

    A decentralized framework for cross administrative domain data sharing

    Get PDF
    Federation of messaging and storage platforms located in remote datacenters is an essential functionality to share data among geographically distributed platforms. When systems are administered by the same owner data replication reduces data access latency bringing data closer to applications and enables fault tolerance to face disaster recovery of an entire location. When storage platforms are administered by different owners data replication across different administrative domains is essential for enterprise application data integration. Contents and services managed by different software platforms need to be integrated to provide richer contents and services. Clients may need to share subsets of data in order to enable collaborative analysis and service integration. Platforms usually include proprietary federation functionalities and specific APIs to let external software and platforms access their internal data. These different techniques may not be applicable to all environments and networks due to security and technological restrictions. Moreover the federation of dispersed nodes under a decentralized administration scheme is still a research issue. This thesis is a contribution along this research direction as it introduces and describes a framework, called \u201cWideGroups\u201d, directed towards the creation and the management of an automatic federation and integration of widely dispersed platform nodes. It is based on groups to exchange messages among distributed applications located in different remote datacenters. Groups are created and managed using client side programmatic configuration without touching servers. WideGroups enables the extension of the software platform services to nodes belonging to different administrative domains in a wide area network environment. It lets different nodes form ad-hoc overlay networks on-the-fly depending on message destinations located in distinct administrative domains. It supports multiple dynamic overlay networks based on message groups, dynamic discovery of nodes and automatic setup of overlay networks among nodes with no server-side configuration. I designed and implemented platform connectors to integrate the framework as the federation module of Message Oriented Middleware and Key Value Store platforms, which are among the most widespread paradigms supporting data sharing in distributed systems

    Secure mobility at multiple granularity levels over heterogeneous datacom networks

    Get PDF
    The goal of this thesis is to define a set of changes to the TCP/IP stack that allow connections between legacy applications to be sustained in a contemporary heterogeneous datacom environment embodying multiple granularities of mobility. In particular, the thesis presents a number of solutions for flow mobility, local mobility, network mobility, and address family agility that is mobility between different IP versions. The presented mobility solutions are based on the so-called identifier-locator split approach. Due to the split, the mobile and multi-homed hosts that employ the presented solution are able to simultaneously communicate via multiple access networks, even supporting different IP versions and link layer technologies. In addition to the mobility solutions, the thesis also defines a set of weak and strong security mechanisms. They are used to protect the mobility protocols from redirection, Denial-of-Service (DoS), and privacy related attacks. The defined security mechanisms are tightly bound to the presented mobility architecture, providing alternative ways to optimize mobility management signalling. The focus is on minimizing end-to-end signalling latency, optimizing the amount of signalling and optimizing packet forwarding paths. In addition, the architecture provides identity and location privacy for hosts. The presented work defines one specific kind of engineering balance between the security, privacy, and efficient mobility signalling requirements. This thesis indicates that the added security, indirection, backwards compatibility, and inter-operable mobility solutions can overcome several of the current TCP/IP restrictions. The presented mobility architecture also provides a migration path from the existing Internet architecture to a new cryptographic-identifier-based architecture
    corecore